Neoatherosclerosis after stent implantation and Treatment

Mitsuyasu Terashima Maoto Habara

Toyohashi Heart Center Japan

The Pathology of Neoatherosclerosis in Human Coronary Implants

Bare-Metal and Drug-Eluting Stents

Gaku Nakazawa, MD,* Fumiyuki Otsuka, MD,* Masataka Nakano, MD,* Marc Vorpahl, MD,* Saami K. Yazdani, PHD,* Elena Ladich, MD,* Frank D. Kolodgie, PHD,* Aloke V. Finn, MD,† Renu Virmani, MD*

Gaithersburg, Maryland; and Atlanta, Georgia

Nakazawa G, et al.: J Am Coll Cardiol 2011; 57: 1314-1322

<u>Toyohashi Heart Center</u>

Neoatherosclerosis in BMS and DES

Neoatherosclerosis is a frequent finding after stent implantation, and occurs earlier in DES than in BMS.

Nakazawa G, et al.: J Am Coll Cardiol 2011; 57: 1314-1322 🖊 <u>Toyohashi Heart Center</u>

Figure 2. A case of very late in-stent restenosis. Optical coherence tomography (OCT) images and histological findings in a symptomatic patient with a GFX stent (3.5x25(A) and 8 years (B) after index

percutaneous coronary intervention demonstrated no restenosis. The line indicates the implanted stent. Follow-up coronary angiography 10 years (C) after stent implantation. D through F, OCT images (D1, E1, and F1, cross-sectional images of site D, E, and F in C before directional coronary atherectomy; D2, E2, and F2, images after directional coronary atherectomy). OCT images at minimum lumen area site (E1) showed remarkable intimal growth inside the stent, which demonstrated a heterogeneous appearance (*) and irregular surface (white arrow) at the minimum lumen area site. At the proximal site, heterogeneous intima (*) also was observed (F1). Furthermore, intraluminal material suggesting thrombus (white arrows) was detected at the distal site (D1). Directional coronary atherectomy was performed, and restenotic tissue was retrieved from site E and F. Arrows in E2 and F2 indicate retrieval site. G through J. Histopathologic findings of the restenotic tissue from site E or F (G, azan magnification x20 ; H, smooth muscle actin magnification x30; I, CD68 magnification x30; J, hematoxylin-eosin, magnification x40) (bars=0.20 mm). Tissue was composed of collagen fiber in which cholesterol crystals (black arrow), foaming macrophages, and smooth muscle cells were observed consistent with the

Circ Cardiovasc Interv. 2011;4:232-238 laden intima) on the OCT image.

Imaging

Optical Coherence Tomographic Analysis of In-Stent Neoatherosclerosis After Drug–Eluting Stent Implantation

Soo-Jin Kang MD. Gary S. Mintz MD. Takashi Akasaka MD. PhD. Duk Woo Dark MD. PhD. PhD; Jong-

Back dru

Meth

pe >:

in-

Pa

10

DES 20 months after implantation had a higher incidence of TCFAcontaining neointima (69% versus 33%, P-0.012). neoir

were olasia fined oture. ersus lining s 43%.

se of

P=0.010), and red thrombi (30% versus 3%, P=0.012) than stable patients. Fibrous cap thickness negatively correlated with follow-up time (r=-0.318, P=0.024). Compared with DES ~ 20 months after implantation (the best cut-on to impleatation had a higher incidence

Patients with unstable (versus

<u> Toyohashi Heart Center</u>

stable) angina had an increasing number of unstable OCT findings including TCFA-containing neointima, neointima rupture, and thrombus (P=0.027). The rate of agreement between grayscale intravascular ultrasound and OCT for detecting intimal rupture was 50% and for detecting thrombus was 44%. The agreement between virtual histology intravascular ultrasound and OCT for identifying TCFA-containing neointima was 78%.

Conclusions-In-stent neoatherosclerosis may be an important mechanism of DES failure, especially late after implantation. (Circulation. 2011;123:2954-2963.)

Circulation 2011 123(25):2954-63

European Heart Journal – Cardiovascular Imaging doi:10.1093/ehjci/jes183

Morphological differences of tissue characteristics between early, late, and very late restenosis lesions after first generation drug-eluting stent implantation: an optical coherence tomography study

Maoto Habara¹, Mitsuyasu Terashima¹*, Kenya Nasu¹, Hideaki Kaneda², Daisuke Yokota¹, Tsuyoshi Ito¹, Tairo Kurita¹, Tomohiko Teramoto¹, Masashi Kimura¹, Yoshihisa Kinoshita¹, Etsuo Tsuchikane¹, Yasushi Asakura¹, and Takahiko Suzuki¹

¹Toyohashi Heart Center, 21-1 Gobudori, Oyama-cho, Toyohashi 441-8530, Japan; and ²Okinaka Memorial Institute for Medical Research, Tokyo, Japan

Received 9 May 2012; accepted after revelon 6 August 2012

Eur Heart J Cardiovasc Imaging. 2013 14: 276-84

<u>Toyohashi Heart Center</u>

Morphological differences of tissue characteristics between early, late, and very late restenosis lesions after first generation drug-eluting stent implantation: an optical coherence tomography study

Maoto Habara¹, Mitsuyasu Terashima¹*, Kenya Nasu¹, Hideaki Kaneda², Daisuke Yokota¹, Tsuyoshi Ito¹, Tairo Kurita¹, Tomohiko Teramoto¹, Masashi Kimura¹, Yoshihisa Kinoshita¹, Etsuo Tsuchikane¹, Yasushi Asakura¹, and Takahiko Suzuki¹

Eur Heart J Cardiovasc Imaging. 2013 14: 276-84 _ Toyohashi Heart Center

(°)

Case 2

SES Very late restenosis lesion

SES very late restenosis (6years) Baseline CAG

At 5.3-year follow-up At 6-year follow-up

Baseline IVUS at 6-year follow-up

Baseline IVUS at 6-year follow-up

Baseline OCT at 6-year follow-up

Recovery from No reflow

Final CAG

Take home message

Restenosis-lesions after stent implantation with neoatherosclerosis is not uniform but complex, which include various components. Then, we should select suitable PCI strategy based on the lesion characteristics derived from imaging modalities including IVUS.

