

LAA Occlusion for Stroke Prevention: What is the Ideal

David R. Holmes, Jr., M.D. Mayo Clinic, Rochester

> TCTAP 2017 Seoul, Korea April 2017

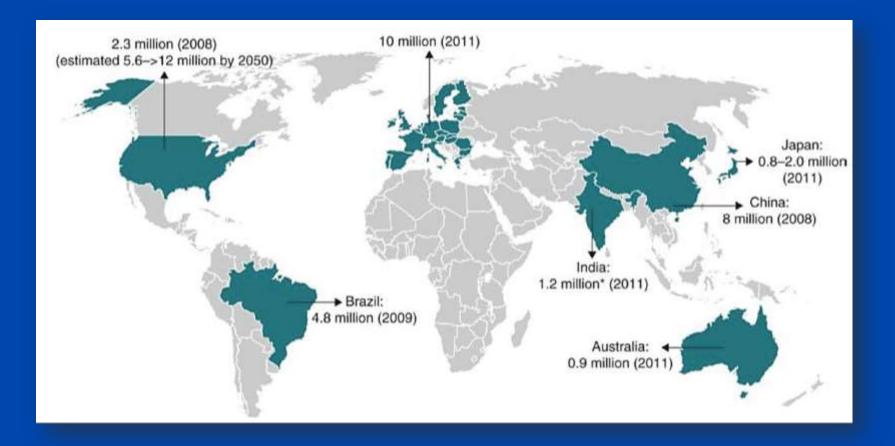
Presenter Disclosure Information

David R. Holmes, Jr., M.D.

"LAA Occlusion for Stroke Prevention: What is the Ideal"

The following relationships exist related to this presentation:

Both Mayo Clinic and I have a financial interest in technology related to this research. That technology has been licensed to Boston Scientific.



LAA – What do we have?

- We have a huge and growing problem of patients with AF and increased risk of stroke and systemic thromboembolism
- We know the proximate pathophysiology
- Alternative medical treatments have significant limitations
- Alternative strategies to medical treatment also have significant limitations.

Worldwide Prevalence of Atrial Fibrillation

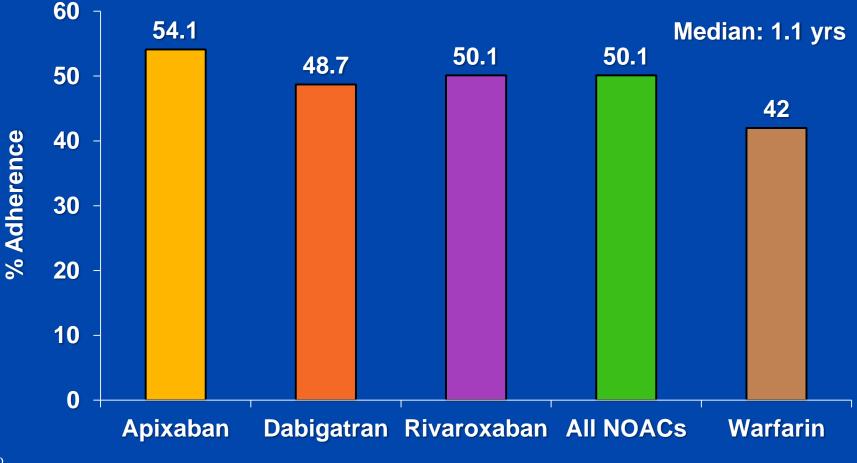
Anticoagulants – Tested in Trials With >60,000 Patients for Stroke Prevention

Bleeding rates

- Major 2-3 %
- Any 15-25%

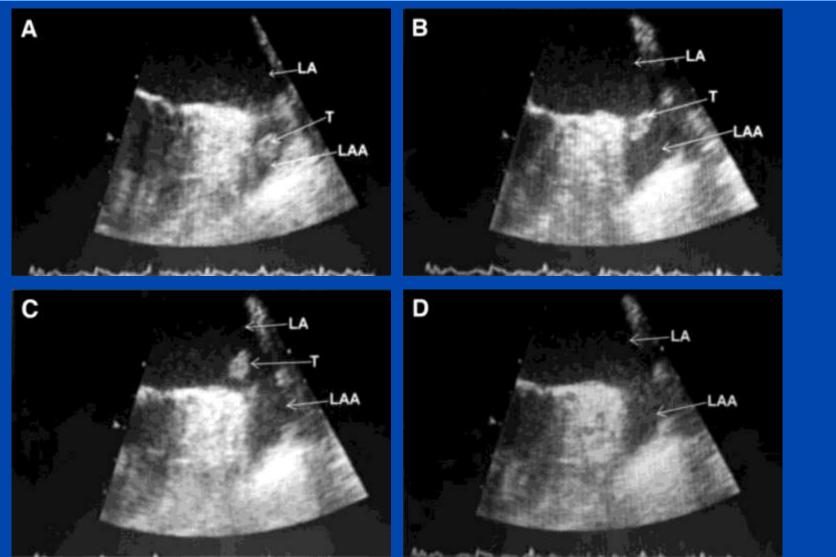
Discontinuation rates

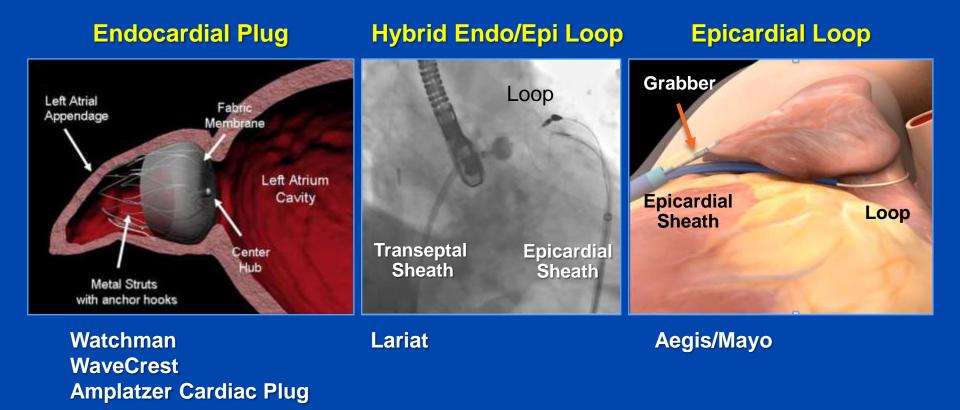
 20-25% in major studies


Concept: Avoid "systemic" complications by using "local" approach: & 100% adherence

Possibly control AF?

Adherence to OAC Proportion of Days Covered


CHA₂DS₂VASc score ≥4

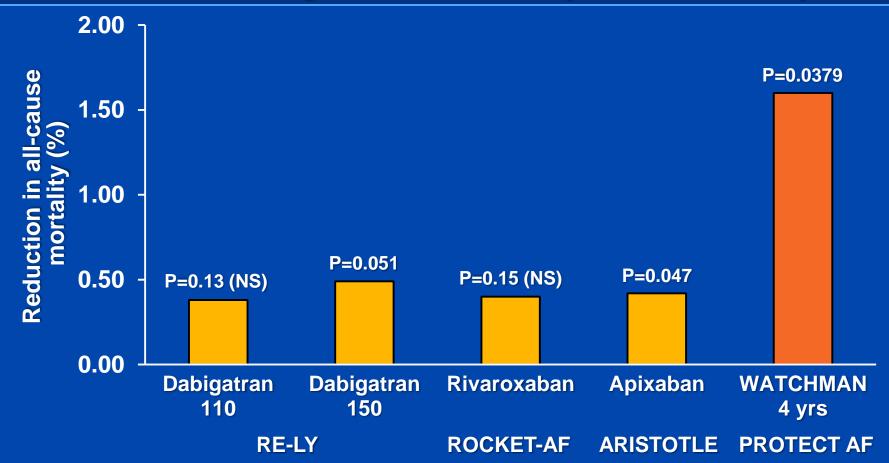

Yao et al: J Am Heart Assoc doi:10.1161/JAHA.115.003074, 2006

Disappearing LAA Thrombus Resulting in Stroke

MAYO CLINIC

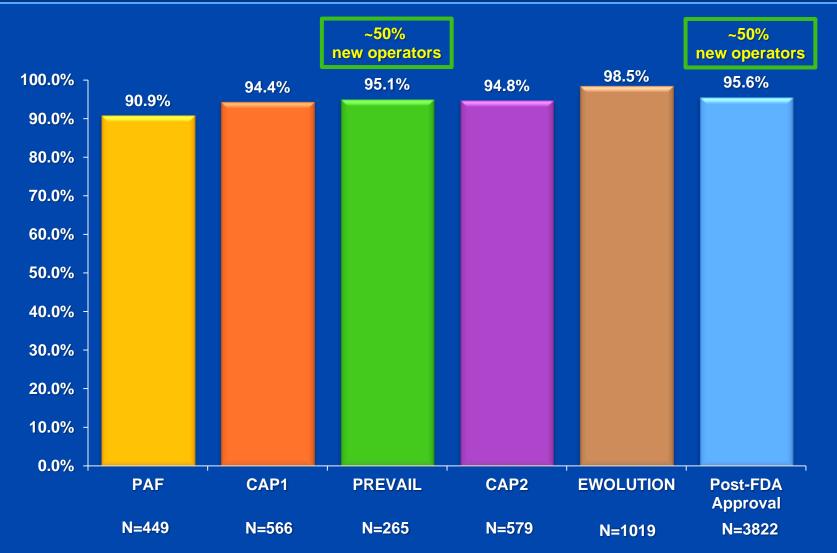
Types of Percutaneous Appendage Closure

Left Atrial Appendage Closure vs Warfarin in AF A Patient-Level Meta-Analysis


	!	HR	P
Efficacy>		0.79	0.22
All Stroke or SE	○ — !	1.02	0.94
Ischemic Stroke or SE	● —•	1.95	0.05
Hemorrhagic Stroke		0.22	0.004
CV/Unexplained Death		0.48	0.006
All-Cause Death		0.73	0.07
Favors Watchman ←	\rightarrow Favors v	warfarin	
0.01 0.1	1	10	
	tio (95% CI)		

Combination of PROTECT AF and PREVAIL patients receiving the Watchman device, vs warfarin for overall stroke, ischemic stroke, and all-cause death.

Mortality Reduction (vs warfarin)

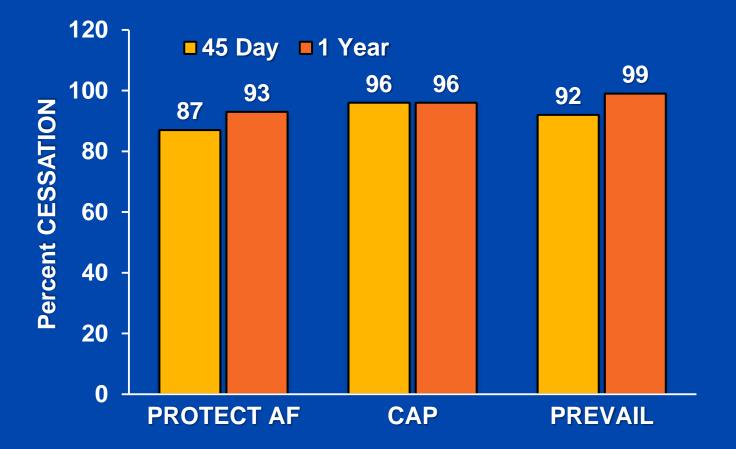


Results from different clinical trials:

¹Connolly, S. NEJM 2009; 361:1139-1151 – 2 yrs f-up ²Patel, M. NEJM 2011; 365:883-891 – 1.9 yrs f-up, ITT ³Granger, C NEJM 2011; 365:981-992 – 1.8 yrs f-up ⁴Reddy, V. LBCT HRS 2013 – 4 yrs f-up

Procedural Success

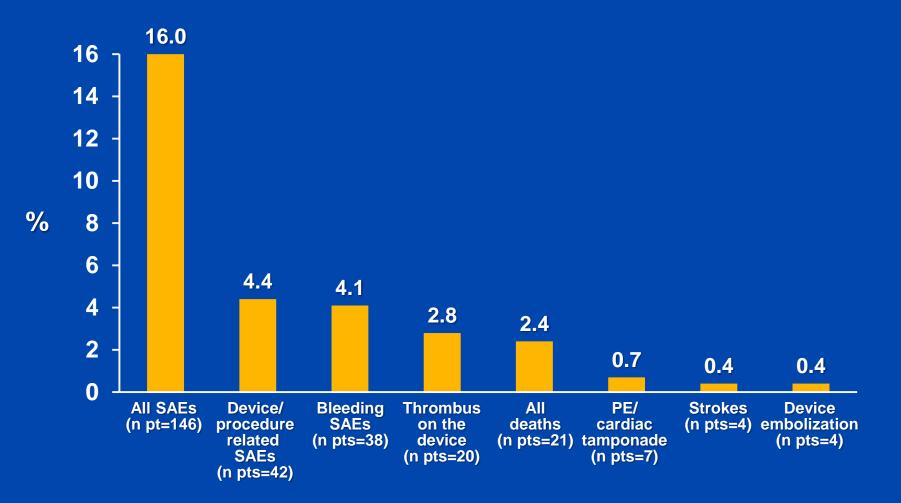
Implant success defined as deployment and release of the device into the LAA; no leak ≥ 5 mm


Comparison of Procedural Complications Across Watchman Studies

	PROTECT- AF	PREVAIL	САР	CAP2	EWOLUTION	Post-FDA approval	Aggregate data
Pericardial tamponade	20 (4.3%)	5 (1.9%)	8 (1.4%)	11 (1.9%)	3 (0.29%)	39 (1.02%)	86 (1.28%)
Treated with pericardiocentesis	13 (2.8%)	4 (1.5%)	7 (1.2%)	NA	2 (0.20%)	24 (0.63%)	
Treated surgically	7 (1.5%)	1 (0.4%)	1 (0.2%)	NA	1 (0.10%)	12 (0.31%)	
Resulted in death	0	0	0	0	0	3 (0.78%)	
Pericardial effusion – no intervention	4 (0.9%)	0	5 (0.9%)	3 (0.5%)	4 (0.39%)	11 (0.29%)	27 (0.40%)
Procedure-related stroke	5 (1.15%)	1 (0.37%)	0	2 (0.35%)	1 (0.10%)	3 (0.078%)	12 (0.18%)
Device embolization	3 (0.6%)	2 (0.7%)	1 (0.2%)	0	2 (0.20%)	9 (0.24%)	17 (0.25%)
Removed percutaneously	1	0	0	0	1	3	
Removed surgically	2	2	1	0	1	6	
Death							
Procedure-related mortality	0	0	0	0	1 (0.1%)	3 (0.078%)	4 (0.06%)
Additional mortality within 7 days	0	0	0	1 (0.17%)	3 (0.29%)	1 (0.026%)	5 (0.07%)

¹WATCHMAN FDA Panel Sponsor Presentation. Oct 2014; ²Boersma et al: EHJ; published online Jan 2016 in press

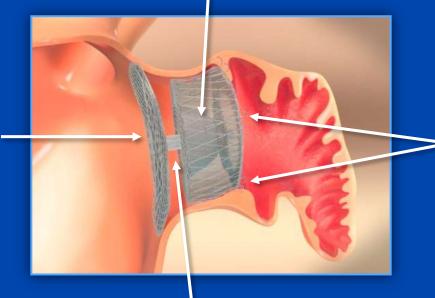
Warfarin Cessation after WATCHMAN



EWOLUTION

- Multicenter registry of 1,021 patients treated with Watchman LAAC – 2013-2015
 - 47 centers
 - 13 countries
- Objective: obtain clinical data on
 - Procedural success and 30-day outcomes
 - Long-term outcomes
 - Bleeding
 - Stroke/TIA

EWOLUTION: Safety Results @ 3 Months N=1025, AC contraindicated 72%



MAYO CLINIC Prof. M.W. Bergmann 2016

AMPLATZER™ Amulet™ Device

Lobe

- **§** Inside the LAA neck
- **§** Designed to conform to LAA anatomy

Stabilizing Wires

§ Engage with LAA wall
§ Help hold the device in place

Waist

- § Maintains tension between lobe and disc
- **§** Allows device to self-orient

Disc

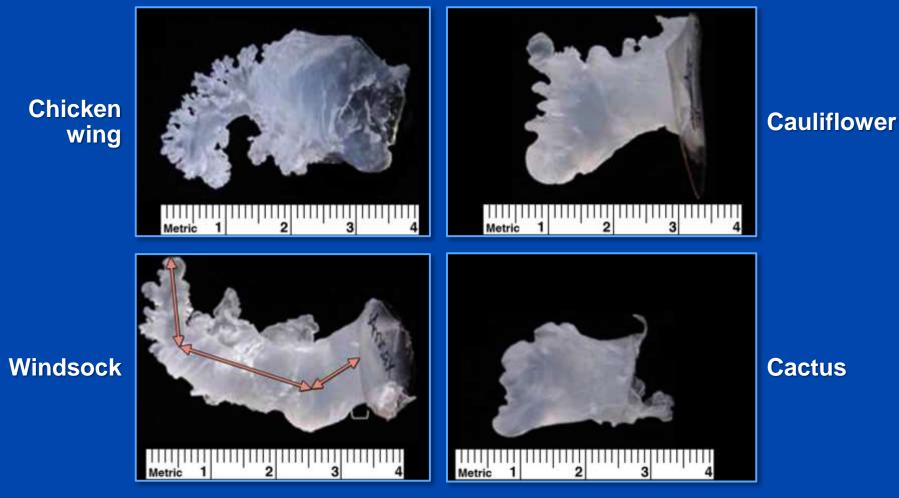
 Completely seal at the orifice

Major Adverse Events 1,071 patients; major bleeding 73%

Device/Procedure Related MAE	No.	%
Death	3	0.3
Related to cardiac perforation	1	0.1
Related to myocardial infarction	1	0.1
Related to cardiorespiratory arrest	1	0.1
Stroke	3	0.3
Pericardial effusion	5	0.5
Resulted in pericardiocentesis	4	0.4
Resulted in surgical intervention	1	0.1
Embolization	1	0.1
Bleeding	10	0.9
Other	7	0.7
Total	29	2.7

Comparison to Other Studies

	ACP Registry ¹	Watchman EVOLUTION ²	Amulet (current study)
Implant success	97.3%	98.5%	98.8%
LAA closure rate (1-3 months) ≤5 mm	98.1%	99.3%	100.0%
Device or procedure- related complications	5.0%	2.7%	2.7%
Early mortality	0.8% (30-day)	0.7% (30-day)	0.3% (7-day)


¹ Tzikas et al: EuroIntervention 10, 2015 ³ Boersma et al: Eur Heart J 37(31):2465, 2016

Residual Issues

- Variable anticoagulation strategies
- Residual leak
- Device thrombus

Endocasts Obtained From 2 Explanted Hearts Showing the Different LAA Intraluminal Morphologies

MAYO CLINIC Beigel et al: J Am Coll Cardiol Img 7:1251, 2014

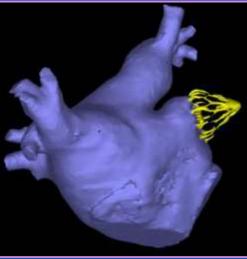
©2012 MFMER | sl

Conclusions

- LAA occlusion devices have very high technical implant success rates
- Implantation is associated with low rates of periprocedural and early adverse events
- LAAO is associated with marked decrease in hemorrhage stroke, cardiac/noncardiac mortality & decreased hemorrhage
- Post procedure anticoagulation strategies vary but result in excellent outcome
- Additional long-term data is being collected to confirm these findings

LAA – What is Ideal? The wish list

- A predictable, safe and effective device for reducing ischemic and hemorrhagic strokes
- Is minimally invasive and can be used in hybrid procedures
- Does not require adjunctive AC/APT therapy
- Can be delivered by IC, EP and CV surgery
- Can be used to treat a variety of LAA sizes and shapes
- Is stable, heals fully and completely without residual leaks



Stroke and Atrial Fibrillation Alternative to Warfarin or NOACS

- Patients who could be treated with warfarin/NOACS
- Patients who choose not to be treated with warfarin/NOACS
- Contraindications to warfarin/NOACS
- In concert with ablation

