Bicuspid TAVR Registry Early- and New-Generation Devices

Jung-Min Ahn, MD.

Division of Cardiology, University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

Introduction

- TAVR has been an established therapy for high-risk patients with symptomatic severe AS.
- Bicuspid AS were not enrolled in initial pivotal randomized trials. Moreover, real-world experience of TAVR for bicuspid AS has been limited, mostly due to anatomical challenges.
- Newer transcatheter heart valves have shown favorable outcomes with less PVL and fewer vascular complications than earlier devices.

Objectives

 Compare the procedural and clinical results of TAVR in bicuspid AS with the use of early- and new-generation devices.

• Examine long-term mortality

Methods

Between April 2005 and May 2015, a total of **301** patients with bicuspid AS undergoing TAVR were enrolled from **20** heart centers in Europe, North America, and Asia-Pacific.

Baseline Characteristics

	Overall (N = 301)	Early devices (N = 199)	New devices (N = 102)	p value
Age	77.0± 9.2	77.0±8.9	77.0±9.8	0.97
Male	57.5%	64.8%	43.1%	< 0.001
NYHA Class III/IV	74.1%	74.4%	73.5%	0.88
Logistic EuroSCORE	14.9 ± 11.7	15.0 ± 11.2	14.7±12.8	0.88
STS Score	4.7±5.2	4.6±5.1	4.9 ± 5.4	0.57
Previous Stroke	16.3%	15.7%	18.6%	0.43
Peripheral Vascular Disease	12.6%	11.1%	15.7%	0.42
COPD	17.3%	18.1%	15.7%	0.60
LVEF, %	51 ± 15	53±15	48±16	0.004

Type of Bicuspid AV*

*Sievers HH et al. J Thorac Cardiovasc Surg 2007;133:1226–33.

CardioVascular Research Foundatio

Procedural Characteristics

	Overall (N = 301)	Early devices (N = 199)	New devices (N = 102)	p value
TransFemoral Access	84.1%	78.4%	95.1%	< 0.001
Nontransfemoral Access	15.9%	21.6%	4.9%	< 0.001
Transapical	39.6%	9.0%	20.0%	
Transsubclavian	20.8%	4.0%	40.0%	
Transaortic	35.4%	8.5%	0	
Transcarotid	4.2%	0	40.0%	
Device Type				
Sapien XT	_	87 (43.7%)	_	< 0.001
CoreValve	—	112 (56.3%)	_	
Sapien 3	—	_	91 (89.2%)	
Lotus	_	_	11 (10.8)	

Yoon SH, Ahn JM, Park SJ et al. J Am Coll Cardiol. 2016 Sep 13;68(11):1195-205

ASAN Medical Center

Procedural and Clinical Outcomes

	Overall (N = 301)	Early devices (N = 199)	New devices (N = 102)	p value
Procedural Outcomes				
Conversion To Surgery	8 (2.9%)	7 (4.0%)	1 (1.0%)	0.27
Coronary Obstruction	3 (1.0%)	5 (1.5%)	0	0.55
Annular Rupture	5 (1.7%)	4 (2.0%)	1 (1.0%)	0.67
Second Valve Implantation	14 (4.7%)	13 (6.5%)	1 (1.0%)	0.04
New Permanent Pacemaker	43 (14.3%)	26 (13.1%)	17 (16.7%)	0.40
PVL ≥ Moderate	255 (84.7%)	161 (80.9%)	0	0.01
Clinical Outcomes				
Stroke, Disabling	3 (1.0%)	3 (1.5%)	0	0.55
Bleeding, Life Threatening	10 (3.3%)	7 (3.5%)	3 (2.9%)	>0.99
Vascular Complication, Major	12 (4.0%)	9 (4.5%)	3 (2.9%)	0.76
Acute Kidney Injury, Stage 2,3	8 (2.7%)	5 (2.5%)	3 (2.9%)	>0.99
Death at 30 days	13 (4.3%)	9 (4.5%)	4 (3.9%)	>0.99

Yoon SH, Ahn JM, Park SJ et al. J Am Coll Cardiol. 2016 Sep 13;68(11):1195-205

ASAN Medical Center

30-Day Outcomes

Device success

Paravalvular Leakage

ASAN Medical Center

Annular Rupture

Second Valve Implantation

New Permanent Pacemaker

Independent Predictors of Any Death In Patients with BAV Undergoing TAVR

	Hazard Ratio (95% CI)	p value
Logistic EuroScore	1.03 (1.01-1.05)	0.03
Life-Threatening or Major Bleeding	2.76 (1.24-6.11)	0.01
Acute Kidney Injury (Stage 2 or 3)	5.48 (1.66-18.12)	0.005

Long-term Mortality at 2 Year

Yoon SH, Ahn JM, Park SJ et al. J Am Coll Cardiol. 2016 Sep 13;68(11):1195-205

ASAN Medical Center

Conclusion

- Overall clinical outcomes of TAVR in bicuspid AS are comparable to those of reported studies
- New-generation devices are associated with less PVL, and consequently a higher device success rate than early-generation devices
- These improved procedural outcomes did not translate into a significant reduction in 30-day mortality or other major clinical endpoints

Conclusion

- Relatively high risk of PPM should be considered.
- This study suggested that selected patients with bicuspid AV stenosis would be a candidate of TAVR with better devices.

