Symptomatic High-Risk Al Is TAVI a Viable Alternative?

Jian Ye, MD, FRCSC Clinical Professor Division of Cardiac Surgery St. Paul's Hospital and Vancouver General Hospital University of British Columbia, Vancouver, Canada

TCTAP, Seoul, April 25-27, 2017

Centre for Heart Valve Innovation St. Paul's Hospital, Vancouver

Disclosure Statement of Financial Interest

Consultant - Edwards Lifesciences - JC Medical Inc.

Etiology of Al and Optimal Device for Al

Etiologies

Degenerative 29%

Idiopathic root dilatation 19%

Congenital abnormalities 18%

Rheumatic 14%

Other/ Unknown 12%

Aortitis/Inflammatory/ Endocarditis 9% Majority of patients have expanding aortic annulus ± root

Optimal device for AI

- Stabilization of dilating structure
- Hemodynamic improvement
- Treatment of multiple etiologies
- Ease of use

Can you use the same devices for Al and AS?

Valves used for Al

Literature Reports

Author	n	Valve	Access	Post dilation	2 nd valve	Conversio n to SAVR	Device success
Guo et al.	33	J-Valve	ТА	-	0	1	32(97%)
Wei et al	6	J-Valve	ТА	0	0	0	-
Wendt et al	8	Acurate	ТА	2	0	0	8(100%)
Schofer et al	11	Direct Flow	TF	-	0	1	10(91%)
Koschyk et al.	10	JenaValve	ТА	-	1	0	-
Schingoff et al	10	JenaValve	ТА	-	0	0	-
Seiffert et al.	31	JenaValve	ТА	2	1	0	30(97%)
Frelrker et al	22	CoreValve	-	-	-	-	18(77%)
Munoz-Garcia et al	10	CoreValve	TF	4	1	-	-
Rissi et al	16	CoreValve	-	-	1	2	-
Testa et al	26	CoreValve	TF,SC, TAo	3	5	0	20(77%)
Roy et al	43	CoreValve	TF, SC,TAo	4	8	1	32(74%)

Edwards SAPIEN Valve with Helio Transcatheter Aortic Dock

Utilizing the Edwards SAPIEN XT Transcatheter Heart Valve Edwards AI Project TA/TF First-in-Man Procedure

SAPIEN XT valve with the Dock

Final Assessment

- JenaValve's unique "3-feeler element" allows the clinician to accurately position the prosthesis in the anatomically correct position during implantation thus ensuring a precise sub-coronary alignment within the patient's native valve.
- JenaClipTM anchoring and clipping mechanism allows the patient's native valve leaflets to be clipped onto the valve enabling the JenaValve to be firmly anchored in the correct anatomical position and provide active fixation and resistance to migration.

CE Mark approval for high risk AI patients

Implantation

Aortogram and Echo

J-ValveTM Ausper System Jie-Cheng Medical Technology

Designed for both AS and AI

Implantation

<u>Clinical Trial Results</u> (J-Valve)

PVL	30 day	6 months
None or Trivial	64.1%	71.8%
Mild	35.9%	28.2%
Moderate	0%	0%

39 Patients with AI

My experience: Easier implantation of J-Valve in AI patients relative to JenaValve

Symptomatic High-Risk Al Is TAVI a Viable Alternative?

- TAVI is a viable alternative for the treatment of AI in selected high-risk patients
- Transcatheter valves with leaflet pinning or stabilization mechanisms, such as J-Valve and JenaValve, have been showing great promise.

