

Samsung Medical Center Sungkyunkwan University School of Medicine

TCTAP 2017 Technical Uncertainties in Bifurcation PCI Predilation, Kiss, POT (and RePOT)

Hyeon-Cheol Gwon

Heart Vascular & Stroke Institute, Samsung Medical Center

Sungkyunkwan University School of Medicine

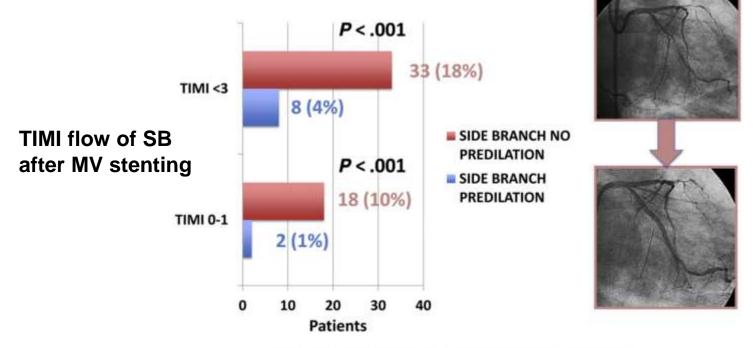
Samsung Medical Center Sungkyunkwan University School of Medicine

Potential conflicts of interest

Speaker's name: Hyeon-Cheol Gwon

☑ I have the following potential conflicts of interest to report


Advisory board Medtronic Asia Pacific Research contracts Abbott Korea Boston Scientific Korea Biosensors Korea Biotronic Korea

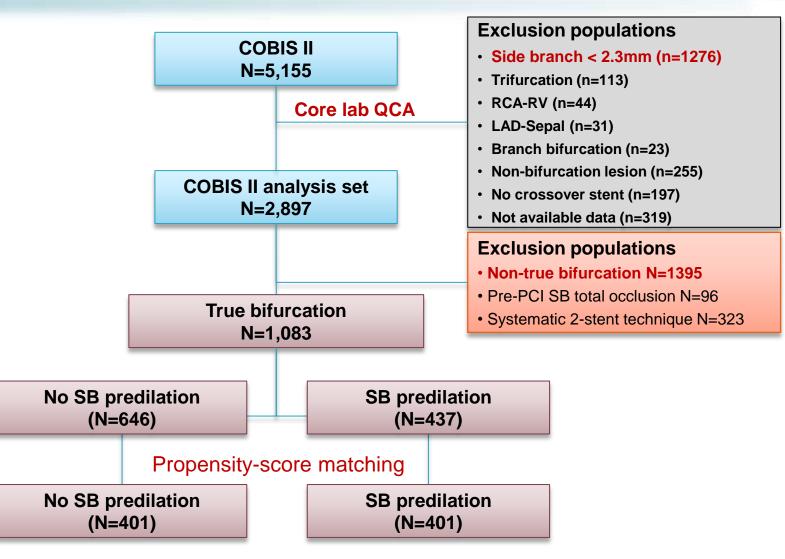

- The lower risk of SB compromise after MV stenting
- Relief of ischemia in the myocardial territory of SB
- Costs
 - Complicated procedure with the higher risk of peri-procedural MI
 - Increased risk of SB dissection

Pan M, et al. The angiographic impact of predilation

- True bifurcation (N=372)
- Randomized to SB predilation vs. no predilation

TIMI flow at the SB after main vessel stenting (primary end point).

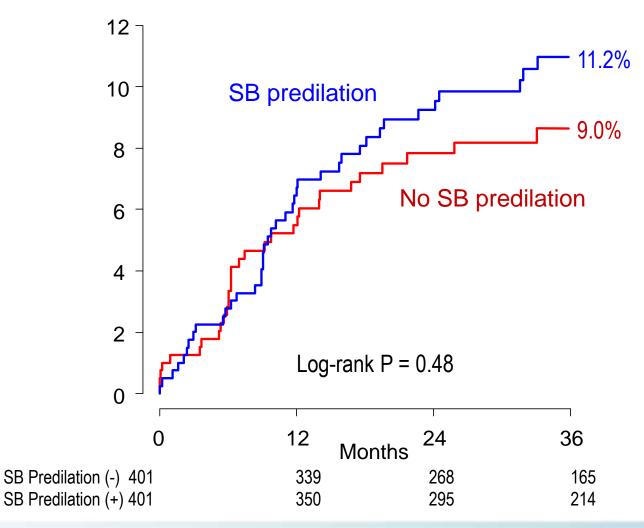
2-year MACE rate was equivalent (predil 8% vs. no-predil 10%, p=0.56)


Pan M, Am Heart J 2014

TCTAP 2017

COBIS II Registry SB predilation

Samsung Medical Center Sungkyunkwan University School of Medicine



Gwon HC, submitted

COBIS II Registry MACE: cardiac death, MI, TLR

Median follow-up duration was 36 [24-51] months

Gwon HC, submitted

Comparison of 2 studies

Samsung Medical Center Sungkyunkwan University School of Medicine

TCTAP 2017

	Pan M, et al.	COBIS II (PS-matched)
Design	RCT	Registry
Number of patients	N=372	N=802
SB diameter	≥ 2.25 mm	≥ 2.3 mm
SB predilation may reduce the risk stenting, but it does not improve the	•	
It is reasonable to apply it for the b SB occlusion.	oifurcation lesion wit	h a high risk of
SB TIMI flow < 3 after stenting*	4% vs. 18%	10% vs. 13%
Long-term clinical event*	8% vs. 10%	11% vs. 9%
* Predilation vs. non-predilation		

Pan M, Am Heart J 2014, Song PS, Gwon HC, Rev Esp Cardiol 2014

SB occlusion is mostly unpredictable

- COBIS II registry, N=2,227
- SB TIMI < 3 after MV stent: N=187, 8.4%

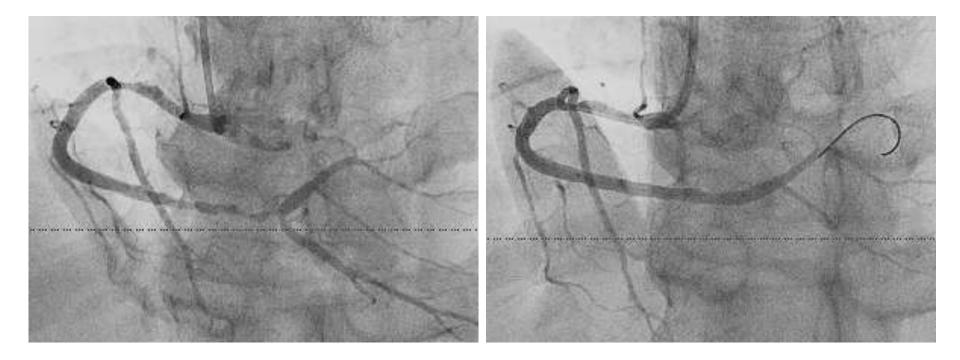
Independent predictors of SB TIMI < 3 after MV stenting

Variables	Odds ratio [95% CI]	p Value
SB ostial disease (DS ≥50%)	2.34 [1.59-3.43] SB plaque burden	<0.001
SB lesion length (by 1 mm)	1.03 [1.003-1.06]	<0.001
Proximal MV disease (DS ≥50%)	2.34 [1.57-3.50] MV plaque burden	0.03
Acute coronary syndrome	1.53 [1.06-2.19]	0.02
Left main lesions (vs. non-left mai	n lesions) 0.34 [0.16-0.72]	0.005

Important non-predictors: bifurcation angle, jailed wire technique, SB predilation

Hahn JY, Gwon HC, J Am Coll Cardiol 2013

TCTAP 2017


Samsung Medical Center Sungkyunkwan University

Case 1

Samsung Medical Center Sungkyunkwan University School of Medicine

What do you expect after MV stenting?

MV plaque burden is a risk factor of SB compromise!

Final kissing ballooning (FKB) in 2-stent technique is crucial.

- Predictors of TVF (Korean Bifurcation Pooled Cohorts)
- N=951, treated with 2-stent strategy

	Adjusted HR*	95% CI	p Value
Treated bifurcation in LM	2.09	1.43 – 3.03	<0.001
High SYNTAX score >32	2.00	1.28 – 3.14	0.002
Diabetes mellitus	1.41	1.00 – 1.99	0.05
Second-generation DES	0.26	0.12 – 0.57	0.001
Non-compliant balloon	0.53	0.36 – 0.79	0.002
Final kissing ballooning	0.44	0.29 – 0.68	<0.001

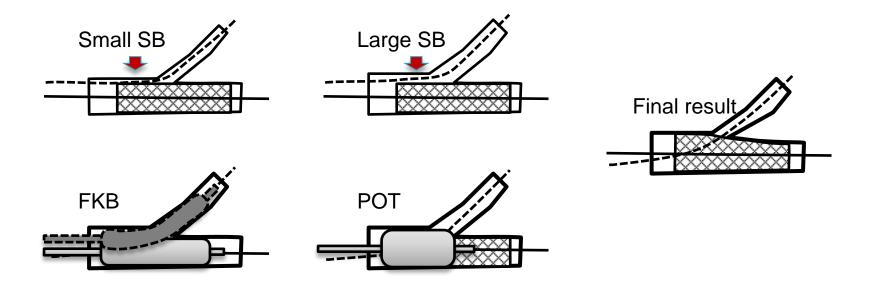
Song PS, Song YB, Gwon HC, JACC CVI 2016

Samsung Medical Center Sungkyunkwan University School of Medicine

Final kissing ballooning in 1-stent technique

	Number Design	Primary endpoint	Outcomes	Results	Memo
Niemela M (NORDIC III) Circulation 2011	N=477 RCT	6-mo MACE	FKB 2.9%, non-FKB 2.9% P=NS	Neutral	
Gwon HC (COBIS I) Heart 2012	N=1,065 Registry	2-year MACE	FKB 9.5%, non-FKB 4.5% p=0.02	Worse	Higher MV TLR In FKB group
Yamawaki M Circ J 2014	N=253 Registry	3-year MACE	FKB 14.6% vs. non-FKB 6.9% p=0.07	Worse	Higher MV restenosis in FKB-group
Kim TH Int J Cardiol 2014	N=251 Registry	3-year MACE	FKB HR=0.40 (95% CI 0.19– 0.84), p=0.015	Better	ACS patients
Biondi-Zoccai G Heart Vessels 2014	N=2,813 Registry	2-year MACE	HR=1.01 (0.80–1.23) p=0.91	Neutral	
Gao Z Chin Med J 2015	N=790 Registry	4-year MACE	FKB: 7.8%, non-FKB 10.0% p=0.33	Neutral	Left main bifurcation
Kim YH (CROSS) JACC CVI 2015	N=306 RCT	1-year MACE	FKB 14.0%, non-FKB 11.6% p=0.57	Worse	Higher MV restenosis in FKB group
Yu CW (COBIS II) JACC CVI 2015	N=1,901 Registry	3-year MACE	HR=0.50 (95% CI: 0.30- 0.85),p = 0.01	Better	Lower MV TLR in FKB group

FKB and POT FKB vs. non-FKB in COBIS I and COBIS II

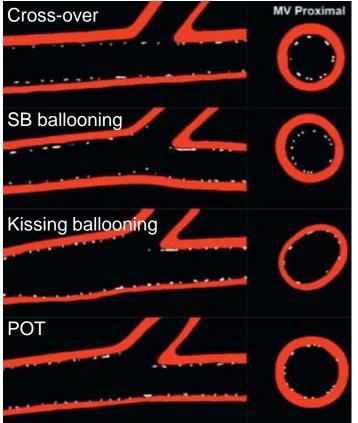

		COBIS I			COBIS II		
Included case	1,065			1,901			
Inclusion	$SB \ge 2.0 \text{ mm}$			SB \geq 2.3 mm (QCA-confirmed)			
LM bifurcation		Excluded			Included		
	FKB	No FKB	p-value	FKB	No FKB	p-value	
MACE (%)	9.5	4.5	0.02	6.8	9.7	0.02	
TLR MV (%)	8.6	3.4	0.004	5.7	7.3	0.04	
TLR SB (%)	1.8	0.0	-	2.2	3.3	0.21	
MV proximal MLD (mm)	2.8±0.5	2.7±0.5	0.001	3.3±0.6	3.0±0.6	<0.001	
MV distal MLD (mm)	2.5±0.5	2.5±0.5	0.39	2.8±0.5	2.7±0.6	0.04	
SB os MLD (mm)	1.4±0.4	1.0±0.5	<0.001	1.9±0.6	1.4±0.7	<0.001	
SB distal MLD (mm)	1.7±0.5	1.5±0.6	<0.001	2.2±0.6	2.0±0.7	0.04	

Gwon HC, Heart 2012, Yu CW, JACC CVI 2015

TCTAP 2017

FKB, POT, and Final-POT School of Medicine School o

- The major benefit of FKB is the optimal expansion of MV stent, which seems to be more remarkable when the SB is bigger.
- Proximal optimization technique (POT) may replace FKB for this purpose, and it is also much simpler.



* Originally it was invented to facilitate the wire passage into the distal struts on MV stent.

FKB, POT, and Final-POT **Proximal optimization technique (POT)**

The POT is performed by postdilating the MV stent just proximal to the carina, with a short NC balloon sized for the proximal MV reference diameter.

It also improves a proximal MV stent apposition and eccentricity

COBIS II POT Study Clinical outcomes

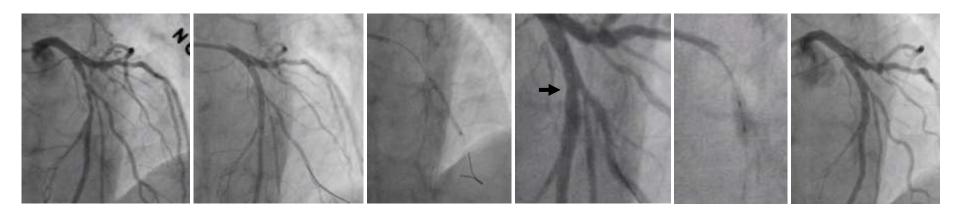
Samsung Medical Center Sungkyunkwan University School of Medicine

- Patients with SB diameter ≥ 2.5 mm in core-lab QCA (N=1,191)
- Propensity score-matching population

	POT (n=204)	No POT (n=665)	HR (95% CI)	p valu e
MACE	6 (2.9)	78 (11.7)	0.25 (0.11-0.60)	0.002
All-cause death	7 (3.4)	25 (3.8)	0.97 (0.41-2.33)	0.95
Cardiac death	1 (0.5)	9 (1.4)	0.37 (0.05-2.97)	0.35
Myocardial infarction	0	12 (1.8)	-	-
Stent thrombosis	2 (1.0)	8 (1.2)	0.98 (0.20-4.77)	0.98
TLR	5 (2.5)	61 (9.2)	0.27 (0.10-0.69)	0.006
MV, proximal	3 (1.5)	40 (6.0)	0.25 (0.07-0.82)	0.02
MV, distal	4 (2.0)	47 (7.1)	0.28 (0.10-0.80)	0.02
SB	4 (2.0)	35 (5.3)	0.37 (0.13-1.09)	0.07
Both vessels	5 (2.5)	48 (7.2)	0.34 (0.13-0.88)	0.03

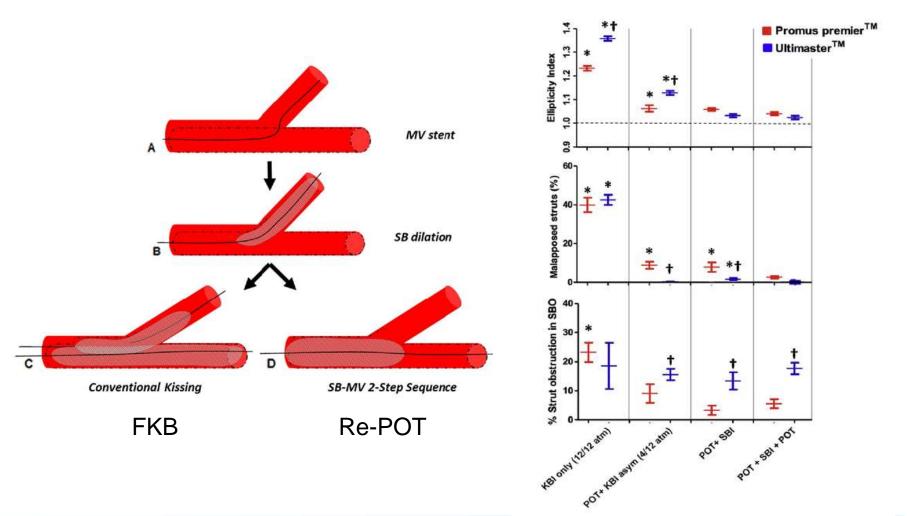
COBIS II POT Study Subgroup analysis

Samsung Medical Center Sungkyunkwan University School of Medicine

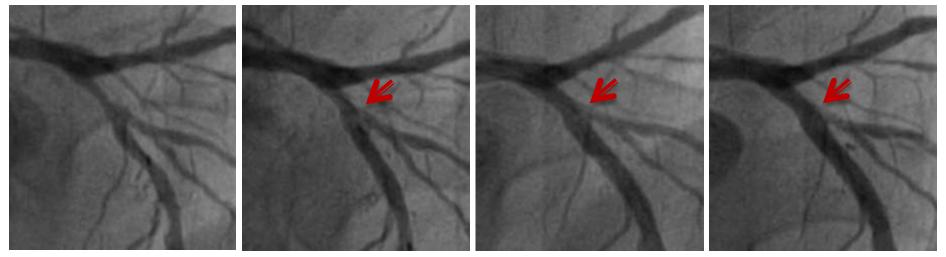

Age < 65 years ≥ 65 years Sex Male Female Diabetes No Yes Acute coronary synd	664 527 899 292 868 323 frome 478 713	- - -	0.51 0.27 0.39 0.41 0.41 0.36	0.22-1.20 0.08-0.87 0.18-0.85 0.10-1.76 0.18-0.94 0.11-1.18	0.36 0.94 0.88
≥ 65 years Sex Male Female Diabetes No Yes	527 899 292 868 323 frome 478	- - - -	0.27 0.39 0.41 0.41	0.08-0.87 0.18-0.85 0.10-1.76 0.18-0.94	0.94
Sex Male Female Diabetes No Yes	899 292 868 323 drome 478	- - 	0.39 0.41 0.41	0.18-0.85 0.10-1.76 0.18-0.94	0.94
Male Female Diabetes No Yes	292	- 	0.41 0.41	0.10-1.76 0.18-0.94	
Female Diabetes No Yes	292	- 	0.41 0.41	0.10-1.76 0.18-0.94	
Diabetes No Yes	868		0.41	0.18-0.94	
No Yes	323	_			0.88
Yes	323	-			0.88
	478 -	\exists	0.36	0.11-1.18	0.00
Acute coronary synd	478 -	_			
	_				
No	713	1	0.38	0.14-1.07	0.88
Yes			0.42	0.17-1.05	0.00
Left main bifurcation					
No	584		0.27	0.07-1.13	0.63
Yes	607	—	0.42	0.19-0.93	0.00
True bifurcation					
No	658		0.39	0.14-1.11	0.80
Yes			0.40	0.10-1.10	0.00
FKB	_				
No	561	_	0.08	0.01-0.57	0.03
Yes	630		0.85	0.40-1.79	
NC balloon		_			
No	939 —		0.76	0.42-1.36	0.87
Yes	252		0.83	0.21-3.32	0.07
Stent technique	_				
One stent	855	·	0.23	0.07-0.73	0.12
Two stent	336		0.72	0.31-1.70	
	0.01 0.1 0.5	1 2	10 100		
	Favors POT		Favors no POT		

Preliminary analysis

FKB and POT Lessons learned



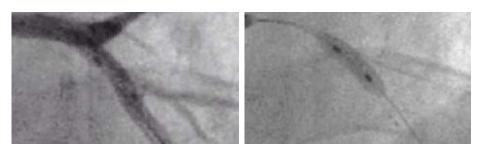
- Final kissing ballooning reduces the risk of TLR in the main vessel, mostly by MV stent expansion, particularly in the bifurcation with a large side branch, which is also true with proximal optimization technique (POT)
- The optimal MV stent expansion is the key for the longterm clinical outcomes in the bifurcation lesion.


Re-POT: POT-Side-POT

Foin JACC CVI 2014, Finet G, JACC CVI 2015

Re-POT is useful after BVS implantation Sungkyunkwan University It can replace final kissing ballooning

M/64, stable angina, treated with BVS


Baseline

After LAD BVS Two 3.0x18 mm

After POT(BVS balloon) and D1 balloon (2.5x20 mm)

After Re-POT 3.5x8 mm 18 atm

TCTAP 2017

