

BRS for Complex Lesions; Share the Experience

Alaide Chieffo, MD Interventional Cardiology Unit S. Raffaele Scientific Institute, Milan, Italy

Disclosure Statement of Financial Interest

I, [Alaide Chieffo], DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation

MILAN EXPERIENCE

- Between May 2012 and August 2016, we treated 518 lesions in 340 patients with Absorb BVS in all-comer population in 2 centers
- Last follow-up at Nov-Dec 2016
- San Raffaele Scientific Institute, Milan, Italy
 EMO GVA Contro Cuona Columbus, Milan, Italy
- EMO-GVM Centro Cuore Columbus, Milan, Italy

ascular

Patients characteristics

	N=340	
Age (years)	63.0 ± 10.2	
Male, n (%)	302 (88.8%)	
Hypertension, n (%)	224 (65.9%)	
Dyslipidemia, n (%)	209 (61.5%)	
Diabetes mellitus, n (%)	87 (25.6%)	
Insulin	20 (5.9%)	
Current smoking, n (%)	51 (15.0%)	
Family history of CAD, n (%)	129 (37.9%)	
Prior PCI, n (%)	152 (44.7%)	
Prior CABG, n (%)	17 (5.0%)	
Prior MI, n (%)	93 (27.4%)	
eGFR<60, n (%)	58 (17.1%)	
Ejection fraction (%)	55.2 ± 8.4	
SYNTAX score	17.5 ± 10.5	
Clinical presentation, n (%)		
Stable angina	294 (86.5%)	
Unstable angina	38 (11.2%)	
STEMI/NSTEMI	8 (2.3%)	

Lesion characteristics

Lesion	N=518 lesion, 340 Pt
Target vessel	
LAD	311 (60.1%)
LCX	105 (20.2%)
RCA	84 (16.2%)
LMT	16 (3.1%)
SVG	2 (0.4%)
No of target lesions per patient	1.5±0.8 250 (73.5%)/80 (23.5%)/ 10
No of target vessels per patient (1/2/3))(2.9%)

ACC/AHA class B2orC	394 (76.1%)
Bifurcation, n (%)	239 (46.1%)
In-stent restenosis, n (%)	20 (3.9%)
Chronic total occlusion, n (%)	32 (6.2%)
Severe calcification	117 (22.6%)

Procedural characteristics

	Lesion preparation	
	Pre-dilatation, n (%)	403 (97.1%)
	Scoring or Cutting balloon, n (%)	85 (16.4%)
	Rotablator, n (%)	19 (3.7%)
	Laser, n (%)	5 (1.0%)
	Scaffold implantation	
	Total scaffold number per lesion	1.5 ± 0.7
	Total scaffold length per lesion, mm	35.3 ± 19.4
	Average scaffold diameter, mm	3.05 ± 0.35
\longrightarrow	Use of 2.5mm scaffold per lesion, n (%)	171 (33.0%)
	Implantation pressure, atm	9.4±1.7
	Total scaffold number per patient	2.3±1.4
\longrightarrow	Total scaffold length per patient, mm	53.8 ± 33.5
\longrightarrow	Use of 2.5mm scaffold per patient, n(%)	152 (44.7%)
	Post-dilation	
	Post-dilation, n (%)	517 (99.8%)
	Post-dilation pressure, atm	21.0 ± 4.3
	Post-dilation balloon/scaffold diameter ratio	1.03 ± 0.09
	Intravascular imaging	
	Intravascular imaging use, n (%)	446 (86.1%)
	Intravascular ultrasound, n (%)	422 (81.5%)
	Optimal coherence tomography, n (%)	76 (14.7%)
tct20	Further intervention based on imaging after post-dilation	122 (23.6%)

Intravascular imaging

Angiographic assessment often underestimates vessel diameter in diffuse lesion

When treating diffuse lesions with current BVS, Intravascular imaging should be important before deployment to confirm lumen/vessel diameter

Clinical outcomes

OSPEDALE SAN RAFFAELE

Median F-U 706 days (IQR 355 - 1088): Clinical FU 98.5%

	1 year	2 year	3 year
Target lesion failure	21 (7.0%)	31 (12.1%)	34 (14.7%)
Cardiac death	3 (1.0%)	5 (2.0%)	5 (2.0%)
Target vessel MI	5 (1.6%)	6 (2.1%)	6 (2.1%)
TLR	18 (6.1%)	27 (10.6%)	30 (13.3%)
All cause death	6 (2.0%)	8 (3.0%)	8 (3.0%)
Any MI	6 (2.0%)	8 (3.0%)	8 (3.0%)
TVR	23 (7.7%)	36 (14.1%)	40 (17.4%)
TLR per lesion	21 (4.7%)	31 (8.1%)	35 (10.4%)
Definite/probable ST	4 (1.2%) *	4 (1.2%)	4 (1.2%)

Event rates are estimated using Kaplan-Meier analysis

*1 Acute ST (BVS for STEMI, day 0)
1 Subacute ST (day 3, BVS edge dissection)
1 Late ST (day63, very small vessel with distal dissection)
1 Late ST (day 146, the patient stopped clopidogrel at 2-month)

Any DAPT cessation was recorded in 94 patients (27.6%) during f-u

Cardiovascular Research Foundation

tct2010

Cardiovascular Research Foundation

Full plastic jacket: MILAN EXPERIENCE

- Between May 2012 and Aug 2016
- All continuous stenting lesions were counted as 1 lesion
- Full plastic jacket was defined as continuous Absorb BVS implantation (without gap) more than 60mm length for main vessels

✓ 57 lesions (57 patients) were treated with FPJ

Baseline characteristics

FPJ (total length ≥ 60 mm)	(n = 57)
Age, y	61.8 ± 10.2
Male, n (%)	54 (94.7%)
Hypertension, n (%)	46 (80.7%)
Dyslipidemia, n (%)	38 (66.7%)
DM, n (%)	26 (45.6%)
IDDM, n (%)	10 (17.5%)
current smoker, n (%)	11 (19.3%)
Family history of CAD, n (%)	16 (28.1%)
prior CABG, n (%)	1 (1.8%)
prior PCI, n (%)	25 (43.9%)
prior MI, n (%)	11 (19.3%)
CKD (GFR < 60) , n (%)	7 (12.3%)
EF, %	53.3 ± 9.9
Clinical presentation	
Stable angina/ Silent ischemia	48 (84.2%)
Unstable angina	9 (15.8%)
STEMI/ NSTEMI	0 (0%)

Lesion characteristics

	FPJ (total length ≥ 60 mm)	(n = 57)	
	Treated vessel		
and the second	LAD	43 (75.4%)	
	LCX	2 (3.5%)	
	RCA	12 (21.1%)	
	ISR, n (%)	2 (3.5%)	
	CTO, n (%)	11 (19.3%)	
	Bifurcation, n (%)	44 (77.2%)	
	Severe calcification, n (%)	24 (42.1%)	
	Syntax score	24.1 ± 11.5	

OSPEDALE

SAN RAFFAELE

Procedural characteristics

FPJ (total length ≥ 60 mm)	(n = 57)
Pre-dilatation, n (%)	57 (100%)
Scoring balloon, n (%)	12 (21.1%)
Rotablator, n (%)	5 (8.8%)
Laser, n (%)	3 (5.3%)
Post-dilatation, n (%)	57 (100%)
BVS number	3.4 ± 0.6
Mean BVS diameter, mm	3.01 ± 0.21
Use of 2.5mm BVS, n (%)	37 (64.9%)
Total BVS length, mm	85.2 ± 15.3
Intravascular imaging, n (%)	52 (91.2%)
IVUS, n (%)	49 (86.0%)
OCT, n (%)	15 (26.3%)

Clinical outcomes Median follow-up period; 443 d	at 1 year days [IQR 304-812]	OSPEDALE SAN RAFFAEL
FPJ (total length ≥ 60 mm)	(n = 57)	
Periprocedural MI*	12 (21.1%)	6.00
1-year events (Kaplan-Meier analysis)		
TLF (Cardiac death, TV-MI, TLR)	7 (14.9%)	
Cardiac death	1 (2.0%)	1
Target vessel MI	2 (4.3%)	
TLR	6 (13.1%)	
MACE (All cause death, TV-MI, TVR)	7 (14.9%)	
All-cause Death	1 (2.0%)	
TVR	6 (13.1%)	
Scaffold thrombosis (definite and pr	obable) 2 (4.3%)*	
* 1 Late ST (day 63, very small vess	sel with distal dissection)	

1 Late ST (day 146, the patient stopped clopidogrel at 2-months)

Cardiovascular eniprocedural MI; CK ≥ 2xURL, in the absence of CK: CK-MB > 3xURL, in the absence of CK or CK-MB: troponin > 3xURL (same as ABSORB trial)

Case: 67 year-old Male Hypertension/ Diab

Baseline angiogram

OSPEDALE

SAN RAFFAELE

Pre-dilation/ IVUS for sizing

Limited

IVUS

landing zone

just after

LAD ostium

VD > 2.5mm

/D

Pre-dilation

- LAD prox NC 3.0mm
- LAD prox-mid: Angiosculpt 2.5mm
- LAD dis: NC 2.0mm

2.5mm

BVS implantation/ Post-dilation

1. Prox	2. Mid	3. Mid-Dis
BVS 3.0x28mm	BVS 3.0x28mm	BVS 2.5×28mm
Post NC 3.0-3.5mm	Post NC 3.0mm	Post NC 2.5mm
4. Dis	Angiogram	5. Dis

💝 tct2016

Final confirmation of IVUS/ Angio

Keypoint 1: Full plastic Jacket

Prox to Distal/ Distal to Prox

In the majority of cases requiring multiple BVS in the same vessel, it is better to implant from distal to proximal, which avoids difficulties in crossing a second BVS through the first BVS and the risk of strut fracture and distortion when crossing.

However, Implanting from proximal to distal should be reserved for cases of precise proximal positioning including a limited proximal landing zone, to avoid excessive overlap

In this case, multiple BVS were implanted prox to distal because of limited prox landing zone

Keypoint 2: Full plastic Jacket

Post-dilation

Especially when implanting proximal to distal, sufficient postdilation of the proximal BVS should be done before crossing the second BVS distally, and delivery through the first BVS should be carefully done to avoid scaffold distortion

In this case, we did sufficient post-dilation whenever one BVS was implanted

Keypoint 3: Full plastic Jacket

Positioning/ Scaffold to scaffold

- Overlaping site seems be related to greater thrombogenicity and delayed neointimal coverage
- To minimize overlap with bulky struts, accurate positioning is important under understanding of marker position

ar

Scaffold edge to scaffold marker (mm)

	Expansion size	Proximal	Distal
	Crimp	1.1	
BVS	2.5 mm	0.9	0.2
2.5 or 3.0mm	3.0 mm	0.9	0.3
	3.5 mm	0.7	
DVC	Crimp	1.4	
3.5mm	3.5 mm	1.1	0.3
	4.0 mm	1.0	

Keypoint 4: Full plastic Jacket

Small diameter segment

Complex disease commonly involves small diameter segments, especially at the distal part of a lesion

- BVS must be avoided in segments with vessel diameter <2.5mm, and DES and/or DCB are valid options
- Angiographic assessment often underestimates true vessel diameter especially in diffuse disease. Intravascular imaging is helpful for sizing

In this case, according to IVUS guidance, we used DES for distal small distal segment

BVS have thicker and wider struts

	Absorb BVS	Xience V
Strut thickness	157µm	81.3µm
Strut width (link)	140µm	81.3µm
Strut width (hoop)	2.5, 3.0mm; 190.5µm	81.3µm
	3.5mm; 215.9µm	
	2.5mm; 32%	
Vessel coverage (%)	3.0mm; 27%	10.7%
	3.5mm; 26%	

Macroscopic pictures; Absorb (Muramatsu et al. JACC intv 2013) Xience V (Doostzadeh et al. Coronary Artery Disease 2010)

If BVS in small vessel, Larger vessel coverage/ volume in the lumen

A Abluminal strut surface area

B Strut volume

Kawamoto H, Colombo A et al. JACC Cardiovasc Interv 2016 9(3)299-300

Oversize is associated with adverse events

Ishibashi Y et al. JACC Cardiovasc Interv 2015 8(13)1715-26

Conclusions

Preliminary experience with BRS full plastic jacket in diffusely diseased vessels encouraging.

Careful lesion preparation , IVUS/OCT guidance postdilatation are essential in this kind of procedure

Larger numbers, longer clinical follow up is warranted

