

Future Perspective on Next BRS

Yoshinobu Onuma MD. PhD.¹ Yohei Sotomi MD.², Taku Asano, MD.², Erhan Tenecioglu, MD¹, Yosuke Miyazaki, MD.¹, Yuki Katagiri, MD² Patrick W. Serruys MD. PhD.³

1. Erasmus University/ Cardialysis, Rotterdam, the Netherlands

- 2. Academisch Medisch Centrum, Amsterdam, the Netherlands
 - 3. NHLI, Imperial College London, London, United Kingdom

Review

Bioresorbable Scaffold The Emerging Reality and Future Directions

Yohei Sotomi, Yoshinobu Onuma, Carlos Collet, Erhan Tenekecioglu, Renu Virmani, Neal S. Kleiman, Patrick W. Serruys

Abstract: In the era of drug-eluting stents, large-scale randomized trials and all-comer registries have shown excellent clinical results. However, even the latest-generation drug-eluting stent has not managed to address all the limitations of permanent metallic coronary stents, such as the risks of target lesion revascularization, neoatherosclerosis, preclusion of late lumen enlargement, and the lack of reactive vasomotion. Furthermore, the risk of very late stent, although substantially reduced with newer-generation drug-eluting stent, still remains. These problems were anticipated to be solved with the advent of fully biodegradable devices. Fully bioresorbable coronary scaffolds have been designed to function transiently to prevent acute recoil, but have retained the capability to inhibit neointimal proliferation by eluting immunosuppressive drugs. Nevertheless, long-term follow-up data of the leading bioresorbable scaffold (Absorb) are becoming available and have raised a concern about the relatively higher incidence of scaffold thrombosis. To reduce the rate of clinical events, improvements in the device, as well as implantation procedure, are being evaluated. This review will focus on the current CE-mark approved bioresorbable scaffolds, their basic characteristics, and clinical results. In addition, we summarize the current limitations of bioresorbable scaffold and their possible solutions. (*Circ Res.* 2017;120:1341-1352. DOI: 10.1161/CIRCRESAHA.117.310275.)

Key Words: bioresorbable scaffold magnesium polymers thrombosis

Mechanical properties of metal vs. PLLA

Composition	Tensile modulus of elasticity (Gpa)	Tensile strength (Mpa)	Elongation at break (%)	Degradatio n time (months)	Products	
Poly (L-lactide)	3.1-3.7	60-70	2-6	>24	Absorb (platform), DESolve (platform), Magmaris (coating)	
Poly (DL- lactide)	3.1-3.7	45-55	2-6	6-12	Absorb (coating)	
Magnesium alloy	40-45	220-330	2-20	1-3	Magmaris (platform)	
Cobalt chromium	210-235	1449	~40	Biostable	Xience	

Onuma and Serruys Circulation 2011

Current limitation of BRS

If a bioresorbable scaffold is ultimately expected to have the same range of applicability as a durable metal stent, the gap in mechanical properties must be reduced.

Currently, three primary limitations exist:

- Low tensile strength and stiffness which require thick struts to prevent acute recoil
- Insufficient ductility which impacts scaffold retention on balloon catheter and limits the range of scaffold expansion during deployment
- Instability of mechanical properties during vessel remodeling if bioresorption is too fast

Let's take a "crash course" of material science

Bioresorption profiles

Bioresorption process of current CE-mark approved BRSs

Table 1. CE-Mark Approved Bioresorbable Scaffolds

Stent Name (Manufacturer)	Stent Platform	Strut Thickness	Coating Material	Coating Thickness	Drug	Reported Release Profile	Drug Dose
BVS 1.1 (Abbott)	PLLA	157 μm	PLLA	2–4 µm	Everolimus	75% of loaded everolimus within 30 days	100 μg/ cm ²
DESolve (Elixir)	PLLA	150 μm	Bioresorbable polymer	<3 µm	Novolimus	More than 85% of the drug is released over 4 wk	5 μg/mm
ART Pure (ART)	PDLLA	170 µm	(3493.0		No drug	NA	NA
Magmaris (Biotronik)	93% Mg and 7% rare earth elements	150 µm	PLLA	1 µm	Sirolimus	Over 3 to 6 mo	1.4 μg/ mm²

BVS indicates bioresorbable vascular scaffold; NA, data not available; PDLLA, poly(L-lactide-co-p,L-lactide); and PLLA, poly-L-lactide.

Design of Absorb and Xience

Covered vessel wall area (footprint [3.0mm device]): 26% (Absorb scaffold) vs. 12% (Xience V)

Muramatsu et al. JACC interv 2013

Snowshoe Versus Ice Skate for Scaffolding of Disrupted Vessel Wall*

Patrick W. Serruys, MD, PHD,† Pannipa Suwannasom, MD,‡ Shimpei Nakatani, MD,‡ Yoshinobu Onuma, MD, PHD‡

Difference of Strut Width in each part (Hinge, Link, Ring) Absorb

Poor penetration

Good penetration

Small area 🔫

< Large area

$\mathbf{P} \downarrow = \mathbf{F} / \mathbf{A} \uparrow = \mathbf{P} \uparrow = \mathbf{F} / \mathbf{A} \downarrow$

Large strut area \rightarrow Poor penetration \rightarrow Small expansion

Small strut area \rightarrow Good penetration \rightarrow Large expansion

Serruys, Suwannason et al. JACC CI

The Nidus for Possible Thrombus Formation

Insight From the Microenvironment of Bioabsorbable Vascular Scaffold

Tenekecioglu et al. JACC intervention 2016 Bourantas et al. JACC intervention

Performance goal and mechanical dilemma

Bioresorbable Scaffolds

From Basic Concept to Clinical Applications

Patrick Serruys Yoshinobu Onuma

SECTION EDITORS: M. Haude • S. Verheye • A. Lafont • A. Abizaid • A. Colombo A. Seth • R Gao • R. Waksman • G. Stone • J. Ormiston

Lepu

Chapter 10 Emerging technologies (Pre-CE mark, Pre FDA, pre PMDA and pre CFDA)

Lifetech Qualimed **Meril life Orbus Neich Abbott: New generation** Absorb scaffold Arterius Manli **Boston Scientific** Huaan tech

"Playing" with molecular orientation and mechanical property of PLLA

e.g. Manli Cardiology's Microfiber Technology

- 1. Highly oriented polylactide constituting a circular monofilament with preferred directional mechanical properties.
- 2. Convert monofilament's directional mechanical properties into scaffold's radial mechanical properties.
- 3. Transform circular monofilament into a scaffold with circular strut geometry.

Amorphous Polymer Oriented Polymer Chain

Manli Cardiology's Microfiber Technology

- 1. Start with highly oriented circular polylactide monofilament with preferred directional mechanical properties.
- 2. Convert monofilament's directional mechanical properties into scaffold's radial mechanical properties.
- 3. Make monofilament's circular geometry into scaffold strut's circular geometry.
- 4. Ambient temperature assembly process

BRMS MW Degradation Profile in vitro and in vivo

CIRCULAR STRUTS (mono fiber) PENETRATE INTO THE VESSEL WALL BETTER THAN THE QUADRATIC STRUTS

$$p(\rho) = \frac{2\mu h}{\pi (1-\nu)\sqrt{a^2 - \rho^2}}$$

Axisymmetric contact pressure distribution is in an inverse relation with the initial contact radius (a in the figure).

Green, A.E. and Zerna, W., Theoretical Elasticity. 1968 Ting, T. T. C. Anisotropic Elasticity Theory and Applications, 1996

Mean Protrusion: 76 ± 25 µm

Mean Protrusion: 125 ± 29 µm

In a porcine model (n=8), flow and endothelial shear stress simulation differentiated the two devices Tenekecioglu et al. Int J Cardiovasc Imaging. 2017 Apr 1. MIRAGE BRMS(n=11) ABSORB BVS (n=6) Serruys PW, et al. Int J Cardiol. 2017; 227:467-473. Pulsatile Pulsatile LUMEN Mirage LUMEN Blood flow **Blood flow** Mean ESS= 0.89±0.79 Pa Mean ESS=1.02±0.67 Pa Low ESS = 70%Low ESS = 53%ESS [Pa] Velocity [m/s] 0.0 0.3 Tenekecioglu, Serruys et al. EuroIntervention;12(10):1296. 1.0 0.125 0.25 0.15 [mm] 0.0 2.0 0.0

Note the intense recirculation area behind the quadratic strut

Matched OCT Cross-Sections

JACC: CARDIOVASCULAR INTERVENTIONS

© 2017 PUBLISHED BY ELSEVIER ON BEHALF OF THE

AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

VOL. 📕, NO. 📕, 2017

ISSN 1936-8798/\$36.00

http://dx.doi.org/10.1016/j.jcin.2017.03.015

Randomized Comparison of Absorb Bioresorbable Vascular Scaffold and Mirage Microfiber Sirolimus-Eluting Scaffold Using Multimodality Imaging

Erhan Tenekecioglu, MD,^a Patrick W. Serruys, MD, PHD,^{a,b} Yoshinobu Onuma, MD, PHD,^a Ricardo Costa, MD,^c Daniel Chamié, MD,^c Yohei Sotomi, MD,^d Ting-Bin Yu, PHD,^e Alexander Abizaid, MD, PHD,^c Houng-Bang Liew, MD,^f Teguh Santoso, MD, PHD^g

#2 "Playing" with molecular orientation and mechanical property of PLLA: ArterioSorb[™] scaffold of ARTERIUS

Tube wall thickness of < 95 μm can be achieved
Scaffold tube thickness comparable to metallic DES

Reducing the protrusion of the strut (stronger and thinner strut ,polylactatide oriented)

Scaffold	Lumen diameter (mm)	Balloon-artery ratio	Scaffold-artery ratio	Acute recoil (%)
Arteriosorb-95 (n=6)	2.97±0.15	1.08±0.06	1.05±0.04	2.7±3.9

Protrusion distance: 89±7 μm

Protrusion distance: 150±9 µm

Arteriosorb from Arterius

Absorb from Abbot

Non-Newtonian Pulsatile Simulation of Coronary Flow in Scaffold Implanted Vessel Segments

Serruys, Bourantas, Torii, Teneciogulu, Al-Lamee, Onuma et al. Optics in Cardiology 2017

Aiming at thinner struts From 150 µm to 100 µm...

1st generation BRS Scaffold Absorb BVS 1.1 **DESolve** Design 150 µm **OCT** appearance 157 µm Scaffold Magmaris ART Design 150 µm OCT appearance 170 µm

Sotomi et al. submitted

Next Generation BVS:

designed to expand the size matrix and Reduce strut thickness **Absorb GT1**™

More Treatment Flexibility

 Broader size matrix, including longer lengths

Improved Deliverability

- Smaller crossing profile
- Enhanced catheter
- Strut thickness reduced substantially compared to Absorb GT1[™]

Optimized Healing

 Same drug and elution rate as Absorb GT1

Data and images on file at Abbott Vascular

Overview of current status of BRS

Product name	Company	Biodegradable material used for backbone	Coating	Developm	Pre-	Clinic	CE mark
Absorb	Abbott	DLLA		VES			
Absorb GT1	Abbott	PLLA	PDLLA	YES	YES	YES	YES
ART Pure	ART	PDLLA	none	YES	YES	YES	YES
Magmaris	BIOTRONIK	WE43 alloy, 93% Mg, and 7% rare earth elements	PLLA	YES	YES	YES	YES
DESolve 100	Elixir	PLLA	bioresorbable polymer	YES	YES	YES	YES
DESolve 150	Elixir	PLLA	bioresorbable polymer	YES	YES	YES	YES
DESolve XL	Elixir	PLLA	bioresorbable polymer	YES	YES	YES	YES
IGAKI-TAMAI	Kyoto Medical	PLLA	none	YES	YES	YES	YES only for PVD
Fantom	REVA	Desaminotyrosine polycarbonate	Desaminotyrosine polycarbonate	YES	YES	YES	
APTITUDE	Amaranth Medical	PLLA	NA	YES	YES	YES	
FORTITUDE	Amaranth Medical	PLLA	bioresorbable polymer	YES	YES	YES	
FAST	Boston Scientific	PLLA	PLGA	YES	YES	YES	
XINSORB	Huaan	PLA/PCL/PGA	PDLLA+PLLA	YES	YES	YES	
NeoVas	Lepu	PLLA	PDLA	YES	YES	YES	
Mirage	Manli Cardiology	PLLA	PLLA	YES	YES	YES	
MeRes100	Meril	PLLA	PDLLA	YES	YES	YES	
Firesorb	MicroPort	PLLA	PDLLA	YES	YES	YES	
Ideal BioStent	Xenogenics	polylactide anhydride mixed with a polymer of salicylic acid with a sebacic acid linker	Salicilate linked with adipic acid	YES	YES	YES	
ArterioSorb	Arterius	PLLA	Bioresorbable polymer	YES	YES		
ReNATURAL (M) ReNATURAL (P)	Cardionovum	(M)=metal, (P)=PLLA	NA	YES	YES		
AMITY	Elixir	PLLA	bioresorbable polymer	YES	YES		
DESolve Cx	Elixir	PLLA	bioresorbable polymer	YES	YES		
IMBIBE 10 LifeTech Iron-Based B	Product	s under evaluati	Nanocarrier layer: Top-coat that ON Inters Chunica 'special' polymer			S	•
On-AV	product	ts under evaluati	on in pre-ci	inica	I ST	ua	les
Unity BRS	QualiMed	Magnesium	PLGA	YES	YES		
Avatar > 5 D	roducts	still under devel	ODMENT	YES	YES		
Scitech MBRS	Scitech	Magnesium	NA	YES	YES		
Terumo/ART DCBS	Terumo Corporation	PDLLA	Bioresorbable polymer	YES	YES		
ZMED 📐 🤿 Q	Darion Madical		ocium ^M nrodu		YES		
Next-Gen Absorb		Juucis/PLLO maying	ϲ϶៲ͷͱϧͺϼͱϭͷ៶	1663			
Sahajanand Bioabsorbable	Sahajanand	PLLA	Bioresorbable polymer	YES			
MAGNITUDE	Amaranth Medical	PLLA	Bioresorbable polymer	YES			
Firefalcon	MicroPort	PLLA	NA	YES			
Galaxy	Shanahai Bio-Head	Η DI Λ	Bioresorbable polymer	VEC			

Summary

- Current version of BRSs still have limited mechanical properties as compared to metallic stents due to its material characteristics. To compensate, the current generation BRS have relatively thick and wide struts.
- To overcome inherent material properties, various modifications to polymer are being attempted. (Stronger and ductile scaffold, Thinner/round struts, Fast resorption without inflammation)
- > The development of next generation BRS with thinner struts ($\leq 100 \mu$ m) is ongoing.
- >35 products are currently being in development, or evaluated in pre-clinical and clinical situations.