Learning from Cases of CCT2014

Case 1: LCX proximal CTO

Cardiovascular Center, Sakurabashi Watanabe Hospital
Atsunori Okamura

Mid-RCA CTO

- At the CTO entrance:

2D wiring is sufficient because it is difficult to control GW accurately in the blood-filled lumen.

- At the CTO body:

The imaginary route is traced with 3D wiring except in cases that you cannot create the route image, the GW torque response is not maintained, or the GW are likely to enter the sub-intima or the GW .

- At the CTO exit:

3D wiring is necessary for pinpoint puncture.

Advantage of the 3D wring

When you advance GW to the target, there are 2 rotation directions to reach the target, i.e., clockwise or counterclockwise.

Longitudinal image

LAO 60°
Incorrect direction

Target

- Route in CTO body
- CTO exit
- Retrograde GW

Counterclockwise 90°

- The GW tip is accurately directed to the target with minimum plaque damage.

Clockwise 270°

- Not accurate GW control
- Creation of a larger space, compressing the target and not supporting the GW during target penetration.
- Advancement of the GW into the sub-intimal space.

There are 64 rotation direction patterns to determine the degree of GW rotation within 45°.

64 rotation direction patterns $=$ 8 patterns of shaft vs. target $X 8$ patterns of tip vs. target in each shaft.

Target

- Route in CTO body
- CTO exit
- Retrograde GW

How to determine these 64 patterns from 2 perpendicular angles of the X-ray system detector

2 perpendicular angles of the X-ray system detector

Mid-RCA image

Pattern 1

Pattern 2

Cross-sectional image (Like IVUS image)
cc 45
Vessel

C = Clockwise
CC = Counterclockwise

LAO 60°

3D image guideline: The object (shaft or tip) is always in front (behind) after rotation if on the same (opposite) side as the rotation direction.

2 perpendicular angles of the X-ray system detector

Pattern 1

RAO 30°

Rotation direction

Pattern 2

Cross-sectional image (Like IVUS image)

Coronary Special Focus Live

Higashi Takarazuka Satoh Fospital CCT2014
CCIz014 PCI Live Gase Iransmission
Hiposi Tuirwehn Butch Hossith

Takarazuka Case 4
 35454 HT
 Dr Okarnura

of ando Trunthain Lox (ctol

-namy if

Oromer itbem a
T\# 079
-3ticacoce

- 6 E
mion

Boston Scientific

RAO, CAU

CAG pre CCT 2014 on October 232014

Retrograde channel from RCA LA branch channel to Retrograde channel from RCA PL channel to LCX. proximal LCX.

Information of angiogram and MDCT

1. Entrance of CTO
2. Location of calcification
3. Perpendicular direction of the X -ray system detector

Exit of CTO

Entrance of CTO
Calc. is located at the myocardium site.

Information of angiogram and MDCT

3. Perpendicular direction of the X-ray system detector

PHILIPS True view

RAO

[^0]

My plan to the CCT 2014 case (LCX CTO lesion, retry procedure)

Retrograde approach through RCA PL channel including the preparation of tip injection from this channel

Antegrade approach with 3D wiring

Antegrade approach IVUS guidance with Navifocus WR IVUS

CCT 2014 October 312014

Target lesion: CTO in the Proximal LCx
Approach: Bilateral TFI
Guide catheter:
Antegrade EBU 3.5 SH 8 Fr, Retrograde JR4 SH 7 Fr

Retrograde approach through RCA PL channel with a SION wire under a Finecross GT.

I moved to antegrade approach.

Navifocus WR IVUS could not be advanced into SN branch.

Under a Corsair, a XT-R wire was advance at the entrance of CTO.

The XT-R wire was changed into a GAIA $2^{\text {nd }}$-wire.

LAO, CAU

Under not ideal perpendicular direction,

 I performed 3D wiring.The GAIA $2^{\text {nd }}$-wire was rotated 135° counterclockwise to direct the tip toward the center of the target, the tip was slipped at the exit.

LAO 40°, CAU 30°

RAO 200, CAU 30°

CRA 30°, LAO 40°

Ideal perpendicular direction

Under ideal perpendicular direction I performed pinpoint puncture with 3D wiring.
By using Crusade, the GAIA $3^{\text {rd }}$ was advanced just before the exit.
I constructed 3D image from ideal the 2 perpendicular angles.


```
LAO 30
```

```
LAO 30
```


LAO 30° CRA 30°

Counterclockwise 45°

LAO 30° CAU 30°

In this situation, the success depends on the choice of GW (ideal deflection).

Pinpoint puncture

The images of the 2 perpendicular angles (CRA 30°, LAO 30° \& CAU 30°, LAO 30°) and CAU 30° showed that the GW was inside the lumen beyond the exit.

The 2 perpendicular angles

CAU 30°

Coronary Special Focus Live Case 4

Coronary Special Focus Live Case 4

Higashi Takarazuka Satoh Hospital

Take home massage form my CCT case in 2014.

- Due to the sufficient torque for rotation, the GAIA wires enables us to trace the imaginary ideal route in the CTO body and penetrate the CTO exit with pinpoint puncture.
- In choosing GW, you have to consider the condition around the target, i.e., plaque hardness, creation of the space in intima or sub-intima, and shape of the exit.
- 3D wiring is the one method to improve the accurate GAIA GW control because you can choose the correct rotation direction and rotate the GW with high angular precision.
- 2D and 3D wiring should be selected depending on the situation. 3D wiring does not always work because the route or exit of CTO is not always clear on the X-ray system, or the GW torque response is not always maintained, or the GW may enter the sub-intimal space. In these situations, 2D wiring while feeling the lesion hardness or other strategies (retrograde approach, or IVUS guide) are recommended.

[^0]: Exit

