April 26, 2017
Presentation Theater, Level 1 - 5:36-5:44pm

DES Technology: Plateau or Innovation Still Needed?

Spencer B. King III, M.D., M.A.C.C.

Emeritus Professor of Medicine Emory University School of Medicine
The Andreas Gruentzig Cardiovascular Center Editor-in-Chief: JACC Cardiovascular Interventions NO ROI

DES Technology:

Favors Plateau

1. Acute Results
 2. In-stent Restenosis 3. Stent Thrombosis

Lower risk of stent thrombosis and restenosis with unrestricted use of 'new-generation' drug-eluting stents: a report from the nationwide Swedish Coronary Angiography and Angioplasty Registry (SCAAR) Sarno G. et al. Eur Heart J. 2013;127:e6-e245

European Hearit juinal

EUROPEAN SOCIETY OF CARDHOLOGY
94.384 stent implantations/ BMS: 64.631, o-DES: 19.2012, n-DES: 10.551

Older generation DES (o-DES):
Cypher and Cypher Select Taxus Express,Taxus Liberte

Endeavor

Newer generation DES (n-DES):
Endeavor Resolute Xience V, Xience Prime \& Promus, Promus Element

THE LANCET
 N..気

Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis
Lancet 2012; 379: 1393-402

49 RCT with > 50.000 pt. $2^{\text {nd }}$ generation CoCr EES emerged as the device with the lowest rate of ST compared with BMS or other DES

	\log (odds ratio)	SE	Weight	Odds ratio IV, random, $95 \% \mathrm{Cl}$		
(A) Definite thrombosis						
Direct estimate	-1.427	0.519	32.4\%	0.24 (0.09-0.66)	-	
Indirect estimate	-1.421	0.359	67.6\%	0.24 (0.12-0.49)	- -	
Total (95\% CI)			100.00\%	0.24 (0.14-0.43)		
Test for overall effect $Z=4.82$ ($p<0.00001$)						
(B) Definite or probable thrombosis						
Direct estimate	-0.968	0.377	39.4\%	0.38 (0.18-0.80)		
Indirect estimate	-1-122	0.304	60.6\%	0.33 (0.18-0.59)		
Total (95\% CI)			100.00\%	0.35 (0.22-0.55)		
Test for overall effect $Z=4.48$ ($p<0.00001$)						
				$\stackrel{\boxed{0.001}}{ }$	1.	10
Favours CoCr-EES						Favours BMS

Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, sinqle-blind, multicentre clinical trial

Patrick W Serruys, Bernard Chevalier, Yohei Sotomi, Angel Cequier, Didier Carrie, Jan J Piek, Ad JVan Boven, Marcello Dominici, Dariusz Dudek,
Dougal McClean, Steffen Helquist, Michael Haude, Sebastian Reith, Manuel de Sousa Almeida, Gianluca Campo, Andrés Iniguez, Manel Sabaté,

501 patients were randomly assigned to the Absorb group or the Xience group. At 3 year follow-up, the co-primary endpoint was the non-inferiority angiographic LLL.

DES Technology:

Favors Need for Innovation

1. Neoatherosclerosis
 2. Impaired Vasomotion 3. Lesion Preparation

Innovations with Technology?

Drug

- Novel Antiproliferative Drugs

Polymer

- Bioresorbable polymer
- Polymer composition
- No polymer

Selective Drug Delivery

- Abluminal Drug Coating

Alloy

- Metallic, Durable
- Metallic, Bioresorbable
- Polymeric, Bioresorbable

Strut Design and Thickness

- Open/Closed cells
- Hybrid cells
- Thinner struts
- Mesh covered struts

Dedicated Stents

- Bifurcation stenting

Alloy Design

- Longitudinal Integrity
- Strut Cross Linkage

Gene Expression Modification

DES Technology:

Favors Need for Innovation

Neoatherosclerosis

In-Stent Neoatherosclerosis

A Final Common Pathway of Late Stent Failure

Seung-Jung Park, MD, PHD,* Soo-Jin Kang, MD, PHD, ${ }^{*}$ Renu Virmani, MD, \dagger Masataka Nakano, MD, \dagger Yasunori Ueda, MD \ddagger
Seoul, South Korea; Gaithersburg, Maryland; and Osaka, Japan

In-stent neoatherosclerosis is an important substrate for both ISR and LST, especially in the extended phase.

Histological findings of neoatherosclerosis

The atherosclerotic change in SES is seen in 40% of cases by $9-\mathrm{m}$; in the BMS, the atherosclerotic change does not begin to appear until 2-y

J Am Coll Cardiol. 2012 Jun 5;59(23):2051-7

Interventional Cardiology

Mechanisms of Very Late Drug-Eluting Stent Thrombosis Assessed by Optical Coherence Tomography

Masanori Taniwaki, MD; Maria D. Radu, MD, PhD; Serge Zaugg, MSc; Nicolas Amabile, MD, PhD; Hector M. Garcia-Garcia, MD, PhD; Kyohei Yamaji, MD, PhD; Erik Jørgensen, MD, DMSc; Henning Kelbæk, MD, DMSc; Thomas Pilgrim, MD;

Bioresorbable vascular scaffolds - basic concepts and clinical outcome

 April 25-27, 2017Ciro Indolfir, ${ }^{1}$, Salvatore De Rosa' and Antonio Colombo ${ }^{3}$

Durable metallic stents	Biodegradable polymer-coated metallic stents				Bioresorbable non-metallic stents	
Xience/ Resolute Onyx Promus	BioMatrix	Ultimaster	Synergy	Orsiro	Absorb	DeSolve/Elixir
$\underset{\text { PoCrl }}{\text { PtCr-EES }}$	316L-BES	CoCr-SES	PtCr-EES	CoCr-SES	PLLA-EES	PLLA-NOV
Strut thickness						
$81 \mu \mathrm{~m} \quad 91 \mu \mathrm{~m} \quad 81 \mu \mathrm{~m}$	$120 \mu \mathrm{~m}$	$80 \mu \mathrm{~m}$	$74 \mu \mathrm{~m}$	$60 \mu \mathrm{~m}$	$157 \mu \mathrm{~m}$	$165 \mu \mathrm{~m}$
Circumferential	Abluminal				Circumferential	
Polymer coating						

Hemodynamically Driven Stent Strut Design

Juan M. Jiménez ${ }^{1}$ and Peter F. Davies ${ }^{1,2,3}$

Biomechanical Assessment of Fully Bioresorbable Devices

Bill D. Gogas, MD,* Spencer B. King III, MD,** Lucas H. Timmins, PHD, \ddagger Tiziano Passerini, PHD, § Marina Piccinelli, PHD, $\|$ Alessandro Veneziani, PHD, \S Sungho Kim, PHD, \ddagger David S. Molony, PHD, \ddagger Don P. Giddens, PHD, \ddagger Patrick W. Serruys, MD, PHD, \uparrow Habib Samady, MD*

Computational fluid dynamics

 applied to virtually deployed drug-eluting coronary bioresorbable scaffolds: Clinical translations derived from a proof-of-conceptBill D. Gogas ${ }^{1,6, \uparrow}$, Boyi Yang ${ }^{2,6, \uparrow}$, Tiziano Passerini ${ }^{2}$, Alessandro Veneziani ${ }^{2,6}$, Marina Piccinelli ${ }^{3,6}$, Gaetano Esposito ${ }^{2,6}$, Emad Rasoul-Arzrumly ${ }^{1,6}$,

Glob Cardiol Sci Pract. 2014 Dec 31;2014(4):428-36 Mosaab Awad ${ }^{1}$, Girum Mekonnen ${ }^{1,6}$, Olivia Y. Hung ${ }^{1,6}$, Beth Holloway ${ }^{1,6}$, Michael McDaniel ${ }^{1,6}$, Don Giddens ${ }^{4,6}$, Spencer B. King $I I I^{1,5.6}$, Habib Samady ${ }^{1,6,{ }^{1, *}}$

CFD simulations following virtual scaffold deployment were calculated at the inflow, endoluminal surface (top surface of the strut), and outflow of each strut surface post-procedure (stage I) and at a time point when 33% of scaffold resorption has occurred (stage II) [6-9-month]

$2^{\text {nd }}$ Generation Everolimus-Eluting Absorb BVS

Absorb GT1 ${ }^{\text {TM }}$

Abbott
Vascular

Next Gen BVS
 thickness

Reduced strut

Wher Post PCI

Next Gen BVS

Transformation of Endothelial Cell Morphology by Fluid Shear Stress

Bovine aortic endothelial cells.

Physiologic Arterial Hemodynamic Shear Stress (>15 dynes/cm²)

Low Arterial Hemodynamic Shear Stress (0-4 dynes/ cm^{2})

April 26, 2017
Presentation Theater, Level 1-5:36-5:44pm

DES Technology:

Favors Need for Innovation

Impaired Vasomotion

Interventional Cardiovascular Medicine
Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial

Lancet. 2016 Nov 19;388(10059): 2479-2491

501 patients were randomly assigned to the Absorb group or the Xience group. At 3 year follow-up, the primary endpoint was superiority of the Absorb BVS vs. the XV stent in angiographic vasomotor reactivity after administration of intracoronary nitrate.

Cumulative frequency

Gogas BD, Benham J, Hsu S, et al. JACC Cardiovasc Interv. 2016 Apr 11;9(7):728-41

DES Technology:

Favors Need for Innovation

Lesion Preparation

Tomography-Derived Computational Fluid

Apr 11;9(7):e65-6
Dynamics in Calcified Vessels to Assess
Treatment With Orbital Atherectomy
Bill D. Gogas, MD, PHD, ${ }^{\text {a,d }}$ Boyi Yang, PhD, ${ }^{\text {b,d }}$ Marina Piccinelli, PhD, ${ }^{\text {c,d }}$ Yasir H. Bouchi, BS, ${ }^{\text {d }}$
Spencer B. King III, MD, ${ }^{\text {ad,e }}$ Nabil Dib, MD, MS, ${ }^{f}$ Don P. Giddens, PHD, ${ }^{d, s}$ Alessandro Veneziani, PHD, ${ }^{\text {b,d }}$ Habib Samady, MD ${ }^{\text {a,d }}$

TCTAP 20 and

(1) JACC
 Alloy Design, Importance of Strut Cross Linkage

Stent Longitudinal Integrity

Ormiston J. et al. JACC Cardiovasc Interv. 2011; 4(12):1310-7
Stents with 2 connectors between hoops have less longitudinal strength when exposed to compressing or elongating forces than those with more connectors

Alloy Design, Thinner Struts

April 26, 2017
Presentation Theater, Level 1 - 5:36-5:44pm

DES Technology: Plateau or Innovation Still Needed?

Gene expression modification may hold promise for changing the natural history of stent thrombosis due to neoatherosclerosis

Very Late Vasomotor Responses and Gene Expression Profiles of Porcine Coronary Arteries Years after Deployment of the Everolimus-eluting Bioresorbable Vascular Scaffold and the Everolimus-eluting Metallic Xience V stent.
Bill D. Gogas, M.D., Ph.D., F.A.C.C., ${ }^{1,2}$ Sandeep Kumar, Ph.D., ${ }^{3}$ James J. Benham, B.S., ${ }^{4}$ Deepal Panchal, M.S, ${ }^{5}$ Yasir Bouchi, B.S., ${ }^{2}$ Olivia Y. Hung, M.D., Ph.D., ${ }^{1,2}$ Rounak Gandhi, M.B.B.S., ${ }^{2}$ Nikolaos Spilias, M.D., ${ }^{1}$ Esha Singhal, B. S., ${ }^{2}$ Don P. Giddens, Ph.D., ${ }^{3}$ Alessandro Veneziani, Ph.D., ${ }^{6}$ Richard Rapoza, Ph.D., ${ }^{4}$ Spencer B. King, III, M.D., M.A.C.C. ${ }^{1,2}$ Hanjoong Jo, Ph.D., ${ }^{3}$ Habib Samady

J Am Coll Cardiol. 2016 Nov 1;68(18S):B334-B335 $\overline{\overline{\text { En }}}$

 Fitra. $=$ -4 $\xrightarrow{\text { Thimate }}$ =

Ten Absorb BVS (BVS) and 6 Xience V (XV) DES were randomly implanted in the coronaries of 6 nonatherosclerotic juvenile Yucatan mini swine, followed-up at 4y.

Gene analysis was performed in explanted coronary arterial segments at 4 years. Out of 12.000 genes only 499 showed differential expression (>1.5 fold change with statistical significance of $\mathrm{p}<0.05$). Those differentially expressed genes were used in a pathway analysis using the MetaCore ${ }^{\text {TM }}$ Key Pathway Advisor (KPA).

Lymphotoxin- β-receptor (LT β R)
 signaling pathway expression in XV treated arteries

Prof. Spencer B. King III

Girculation Rescarch: Rescarch.

Deficiency in Lymphotoxin $\boldsymbol{\beta}$ Receptor Protects From Atherosclerosis in apoE-Deficient Mice

Maria Grandoch, Kathrin Feldmann, Joachim R. Göthert, Lena S. Dick, Susanne Homann,
Christina Klatt, Julia K. Bayer, Jan N. Waldheim, Berit Rabausch, Nadine Nagy,
Alexander Oberhuber, René Deenen, Karl Köhrer, Stefan Lehr, Bernhard Homey, Klaus Pfeffer,
Jens W. Fischer
The extent of atherosclerosis was quantified in en face preparations of the aorta.
The atherosclerotic plaque score was significantly lower for apoE-/-mice deficient in LTbR than for their littermate controls area fraction: apoE-/-, $8.9 \% \pm 0.6 \%$; apoE-//LTbR-/-, $6.6 \% \pm 0.7 \% ; \mathrm{n}=6-8$) as determined by lipid staining with Oil Red O

April 26, 2017
Presentation Theater, Level 1 - 5:36-5:44pm

DES Technology: Plateau or Innovation Still Needed?

Despite a fairly flat plateau resulting in excellent intermediate term results of DES technology, improved synergy between biomechanics and vascular biology is clearly needed for optimal long-term results.

April 26, 2017
Presentation Theater, Level 1 - 5:36-5:44pm

DES Technology:
 Plateau or Innovation Still Needed?

Thank you

