Zilver PTX Stent for CLI – Insights from the Japan Post-Market Study

Hiroyoshi Yokoi, M.D.

Department of Cardiovascular Medicine Fukuoka Sanno Hospital Fukuoka, Japan

On behalf of the Investigators

COI Disclosure First Author : Hiroyoshi Yokoi

1.Consultation fees : none

2.Stock ownership/ Profit : none

3.Patent fees : none

4.Remuneration for lecture : Daiichi-Sankyo, Takeda, MSD,

Astarazeneka, Terumo, BSJ, Cook,

5. Manuscript fees: none

6.Trust research/ Joint research funds: none

7.Scholarship fund: Takeda, Daiichi-Sankyo

8.Affiliation with Endowed Department : none

9. Other remuneration such as gifts : none

Global Clinical Program

More than 2400 patients to be included in current Zilver PTX clinical program

Japan PMS Compared to RCT and SAS

	Zilver PTX RCT	Zilver PTX SAS	Zilver PTX Japan PMS	
	No significant untreated			
	At least one pater			
	Maximum 2 Zilver PTX stents	Maximum 4 Zilver PTX		
	per lesion	stents per patient	ALL patients treated with	
Key Study	Lesion length ≤ 14 cm	No ovelucione	enrollment limit), NO exclusion criteria	
Criteria	One lesion per limb	NO exclusions		
	No prior stent in SFA	ISR included		
	Excluded if serum creatinine > 2.0, renal failure, or dialysis	No exclusions		
Antiplatelets	Clopidogrel or ticlopidine recommended for 60 days, aspirin indefinition			
Follow-up	5 years	2 years	5 years	
Patency	DUS core laboratory analysis	DUS site analysis		
Stent Integrity	X-ray core laboratory analysis			

Increasingly complex patients and lesions

Patient Demographics and Comorbidities

	Zilver PTX RCT	Zilver PTX SAS	Zilver PTX Japan PMS
Patients	236	787	907
Age (years)	68 ± 10 *	67 ± 9 *	74 ± 9
Male	66%	73%	70%
Diabetes	50% *	36% *	59%
High cholesterol	76% *	58%	61%
Hypertension	89%	80% *	85%
Pulmonary disease	19% *	9%	8%
Renal Failure (eGFR< 60 and/or "on Dialysis")	0% (10% renal disease*)	Not assessed (11% renal disease*)	36% (44% renal disease)

* *p* < 0.01 compared to Japan PMS

Japan PMS patients were older, more diabetic, and had more renal failure

Baseline Lesion Characteristics

		Zilver PTX RCT		Ziver PTX SAS		Zilver PTX Japan PMS
Lesions		247		900		1075
Lesion length (cm)		6.6 ± 3.9 *		10.0 ± 8.2 *		14.7 ± 9.7
Diameter stenosis (%)		81 ± 17 *		85 ± 16 *		92 ± 11
Total occlusions		33% *		38%		42%
In-stent restenosis		0% *		15%*		19%
	0	0%		0%		7%
Patent runoff	1	22%	*	19%	*	32%
vessels	2	35%		35%		32%
	≥3	42%		45%		29%

* *p* < 0.05 compared to Japan PMS

Japan PMS lesions were more complex (e.g., longer, more ISR, fewer patent runoff vessels)

Baseline Clinical Assessment

Pre-procedure Clinical Assessment		Zilver PTX RCT		Zilver PTX SAS		Zilver PTX Japan PMS
Rutherford	1-3 (Claudication)	91%	. *	89%	. *	78%
	4-6 (CLI)	9%		11%		22%
ABI		0.67 ± 0.19	*	0.64 ± 0.26		0.63 ± 0.18

* *p* < 0.01 compared to Japan PMS

22% of patients in Japan PMS had critical limb ischemia (Rutherford 4-6)

Thrombosis/occlusion

- SFA stent thrombosis can be difficult to distinguish from total occlusion caused by restenosis
 - No standardized classification
 - Easier to distinguish thrombosis from restenosis at earlier timepoints (e.g., < 30 days), more difficult at later timepoints

Thrombosis/occlusion

Time After Procedure	Cumulative Occurrence Rate			
12 months	3.0%			
24 months	3.6%			

- 3.6% rate of site-reported total occlusion of suspected thrombotic origin through 24 months
 - Rate similar to Zilver PTX in RCT (2.2%) and SAS (3.5%), bare Zilver in RCT (3.6%), and 30-day to 12-month BMS and PTA rates in literature (2-4%)

Freedom from TLR

Freedom from TLR

Freedom from TLR rate in PMS remains high and consistent with both pre-market studies

Clinical Benefit

Clinical benefit is defined as freedom from persistent or worsening claudication, rest pain, ulcer, or tissue loss

Clinical Benefit

Clinical benefit in the Japan PMS is similar to both pre-market studies

Primary Patency by Duplex Ultrasound

Primary Patency by Duplex Ultrasound

Primary patency rate in the Japan PMS is similar to both pre-market studies

Analysis of Critical Limb Ischemia Patients

• 22% of patients (n=188) enrolled in Japan PMS were classified as critical limb ischemia (Rutherford 4-6)

CLI and non-CLI Demographics and Comorbidities

	Zilver PTX Japan PMS	JPMS non-CLI	JPMS CLI
Patients	907	670	188
Diabetes*	59%	56%	73%
High cholesterol*	61%	63%	54%
Hypertension	85%	85%	87%
Renal Failure (eGFR< 60 and/or "on Dialysis")*	36% (44% renal disease)	30% (37% renal disease)	57% (67% renal disease)

* *p* < 0.05 comparing non-CLI and CLI groups

CLI patients had higher prevalence of diabetes and renal failure

CLI and non-CLI Baseline Lesion Characteristics

		Zilver PTX Japan PMS	JPMS non-CLI	JPMS CLI
Lesions		1075	802	218
Lesion length (cm)*		14.7 ± 9.7	14.3 ± 9.6	15.9 ± 9.6
Total occlusions		42%	40%	46%
In-stent restenosis		19%	18%	20%
Patent runoff vessels*	0	7%	5%	14%
	1	32%	29%	42%
	2	32%	35%	26%
	≥3	29%	32%	18%
ABI*		0.63 ± 0.18	0.64 ± 0.16	0.56 ± 0.22

* *p* < 0.05 comparing non-CLI and CLI groups

CLI patients had longer lesions, fewer patent runoff vessels, and lower ABI

Freedom from TLR in CLI and non-CLI Patients

Favorable freedom from TLR results in CLI patients

80s male, CLI without dialysis

Infective gangrene on 4th toe

Risk factors Type II DM, Hypertension Hyperlipidemia Previous History of Post CABG Post CVA Severe AS

Lower extremities MRA

Lt CIA Ostial Flash Occusion

Antegrade approach (0.018 wire)

Retrograde and antegrade stent implantation

Retrograde CIA-EIA stent

(Epic: 8.0 × 120mm)

Antegrade EIA stent (Epic: 8.0 × 40mm)

Final Ango (1st session)

Novel Side-Grooved Guiding Sheath

Key words: superficial femoral artery; lesion treatment; chronic total occlusion

5Fr Novel Side-Grooved sheath

0.018 Treasure GW manipulation with 4F CXI catheter through novel side-grooved sheath by surface echo guidance

Echo guide (SFA-DFA Bif)

Severe calcification in SFA dsital

Successful SFA CTO wire cross (distal SFA)

1st IVUS after BA

High probability to capture the true lumen

Subintimal Space

IVUS guided 0.014 Astato 9-40 wire re-manipulation to get the intraluminal lumen with Prominent micro-catheter

SFA CTO BA 2nd (Ultraverse : 4.0 × 220mm)

2nd IVUS after BA

Determine when lesion preparation should be considered

Lesion Preparation (Cutting BA 4.0 × 15mm)

DES Implantation

Identify proximal and distal reference segment landing zones and accurately select stent size and length to maximize stent dimensions₃₇

Post Stent dilatation with high-pressure (18atm) BA dilatation (5.0 × 100mm)

IVUS (Post BA)

Identify maximize stent cross-sectional area relative to reference.

Final Angio

After minor amputation, wound was completely healed

18 months later (No restenosis)

Conclusions

- Large amount of clinical data ranging from carefully controlled Level I evidence to large, global, real-world experience
- As expected, patient population and lesion characteristics become more challenging in real-world, all-comer studies
 - 22% of patients in Japan PMS had CLI
- 24-month Japan PMS results are positive and confirm the long-term benefit of the Zilver PTX technology
 - Favorable results in challenging CLI patient population
- Consistent results across studies provide added support for the established long-term performance of the Zilver PTX technology
 - Reaffirms long-term safety and effectiveness

FT

Knowledge Capital Congres Convention Center, Grand Front Osaka

Yoshiaki Yokoi MD. FJCC, FSCAL FACC Departments of Cardiology.Kishiwada Tokushukai Hospital