What Should Be the Default SFA Strategy: Updated Evidence for TASC C or D Femoro popliteal Lesions

Biologic and Mechanical Suppression for Restenosis: Drug-Eluting Stent

Hiroyoshi Yokoi, M.D.

Department of Cardiovascular Medicine Fukuoka Sanno Hospital Fukuoka, Japan

On behalf of the Investigators

Other Japan Zilver PTX PMS Committee (JPPC) Members: Takao Ohki, MD, PhD, Kimihiko Kichikawa, MD, Masato Nakamura, MD, PhD, Kimihiro Komori, MD, Shinsuke Nanto, MD, PhD, and Michael D. Dake, MD

COI Disclosure First Author : Hiroyoshi Yokoi

1.Consultation fees : none

2.Stock ownership/ Profit : none

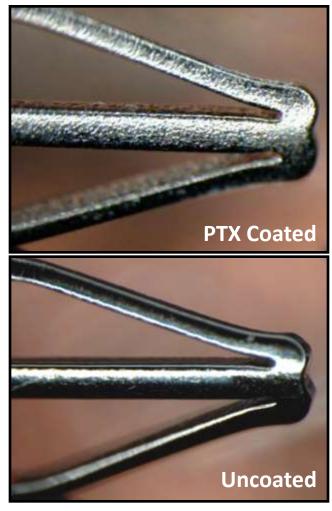
3.Patent fees : none

4.Remuneration for lecture : Daiichi-Sankyo, Takeda, MSD,

Astarazeneka, Terumo, BSJ, Cook,

5. Manuscript fees: none

6.Trust research/ Joint research funds: none


7.Scholarship fund: Takeda, Daiichi-Sankyo

8.Affiliation with Endowed Department : none

9. Other remuneration such as gifts : none

Zilver PTX Drug-Eluting Stent

- Designed for the SFA
- Available in 50 countries including US, EU and Japan
- Dual therapy
 - Mechanical scaffold:
 Zilver Flex[®] stent platform
 - Drug therapy: Paclitaxel only
 - No polymer or binder
 - 3 µg/mm² dose density
- Sponsor: Cook Medical

Company Confidential, Do

Japan PMS Compared to RCT and SAS

	Zilver PTX RCT	Zilver PTX SAS	Zilver PTX Japan PMS		
	No significant untreate				
	At least one pate				
	Maximum 2 Zilver PTX	Maximum 4 Zilver PTX			
	stents per lesion	stents per patient	ALL patients treated with		
Key Study	Lesion length ≤ 14 cm		Zilver PTX enrolled (up to enrollment limit), NO exclusion criteria		
Criteria	One lesion per limb	No exclusions			
	No prior stent in SFA	In-stent restenosis included			
	Excluded if serum creatinine > 2.0, renal failure, or dialysis	No exclusions			
Antiplatelets	Clopidogrel or ticlopidine recommended for 60 days, aspirin indefinitely				
Follow-up	5 years	2 years	5 years		
Patency	Core laboratory analysis Site analysis				
Stent Integrity	X-ray core laboratory analysis				

Increasingly complex patients and lesions

Leave the *right thing* behind in SFA TASC-C/D lesions

• <u>Stent Integrity</u>

• Safety (no increased stent thrombosis)

• Anti-restenosis effect

• Pattern of restenosis

5-year Stent Integrity from RCT

Study Period	Number of New Events	Fracture Rate ¹	
Enrollment	0	0.0%	
1-year	4	0.9%	
3-year	3	1.9%	
5-year	0	1.9%	

¹ Kaplan-Meier estimates

Zilver PTX has excellent durability in challenging SFA environment

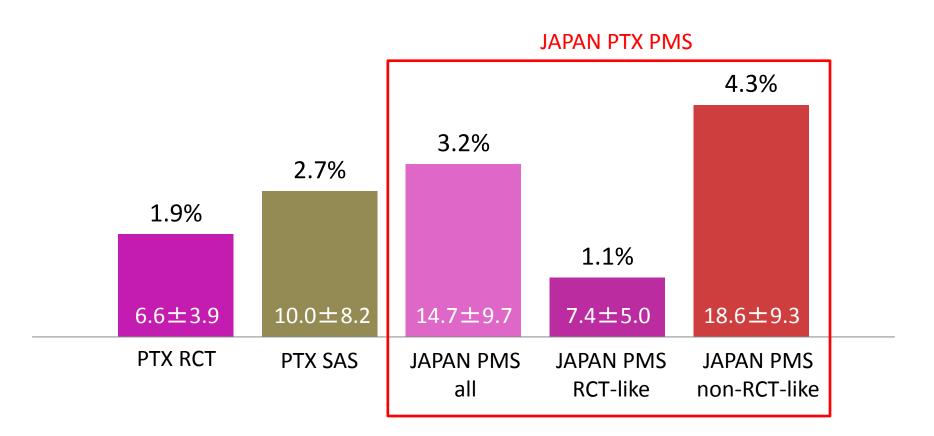
Stent Integrity through 12 months

- 1066 stents were evaluated by sites in Japan PMS
 - 17 total fractures (1.6%)

	RCT	SAS	Japan PMS
Fracture Rate	0.9%	1.5%	1.6%
Number of Stents Evaluated	457	1889	1066

<u>Low fracture rate</u>, not significantly greater than in pre-market studies despite more complex lesions (e.g., longer, more ISR, fewer patent runoff vessels)

Leave the *right thing* behind in SFA TASC-C/D lesions


• Stent Integrity

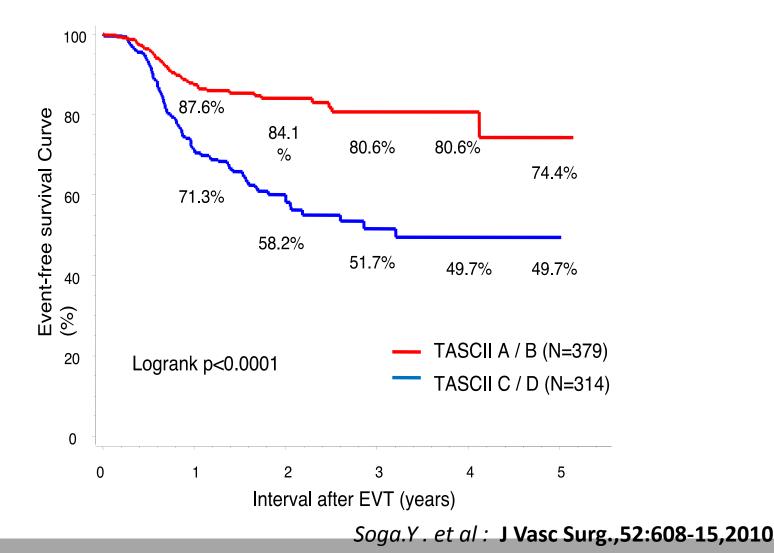
• Safety (no increased stent thrombosis)

• Anti-restenosis effect

• Pattern of restenosis

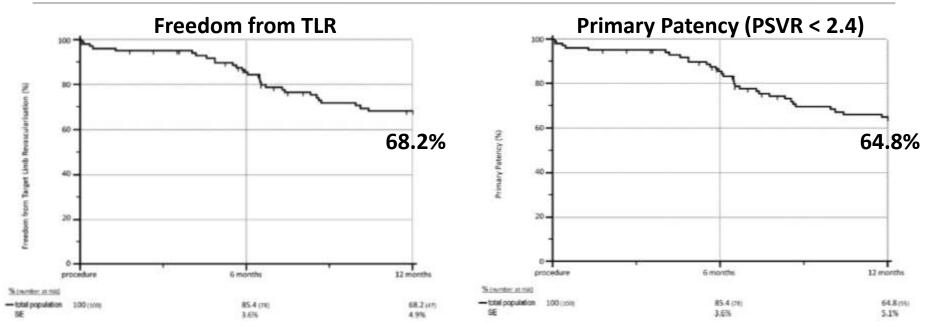
12-Month Stent thrombosis/Occlusion after stent Placement

Leave the *right thing* behind in SFA TASC-C/D lesions


• Stent Integrity

• Safety (no increased stent thrombosis)

Anti-restenosis effect


• Pattern of restenosis

Mid-Term Clinical Outcome and Predictors of Vessel Patency after Femoropopliteal stenting with Self-Expanding Nitinol Stent Primary Patency Rate

11

Bare Metal Stent Results in Long Lesions -DURABILITY 200 Study Results

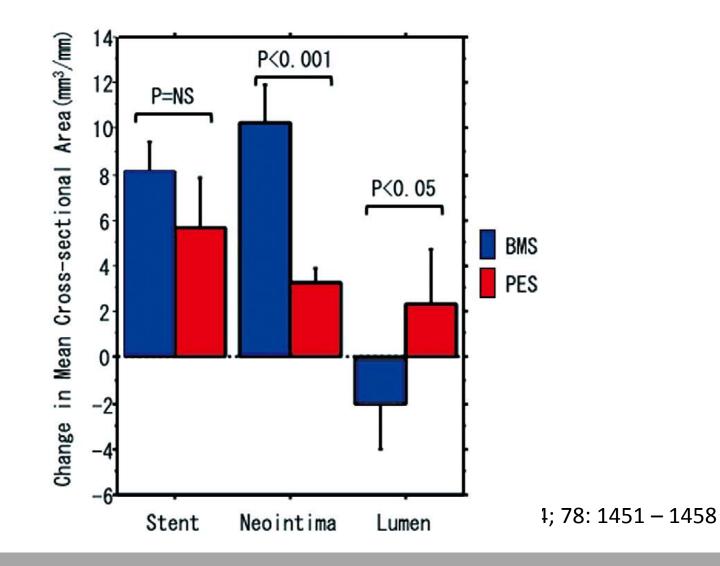
5 occurrences of thrombosis reported (5/100, 5%) through 30 days

Patient	Time	Event Description	Treatment
1	In hospital	Occlusion	Successful thrombectomy, PTA and stent
2	Post-discharge	Occlusion	Successful thrombectomy
3	5 days	Acute ischemia	Successful thrombolysis
4	12 days	Thrombosis	Bypass
5	14 days	Claudication	Successful thrombolysis, PTA and stent

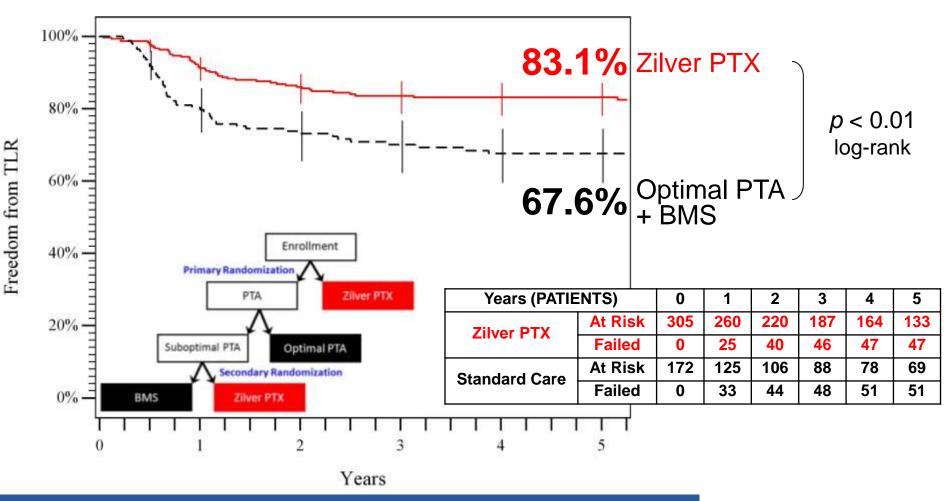
Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp

Effect of Bare-Metal Nitinol Stent Implantation and Paclitaxel-Eluting Nitinol Stent Implantation on Vascular Response in the Superficial Femoral Artery Lesion Assessed on Intravascular Ultrasound

Kojiro Miki, MD; Kenichi Fujii, MD; Daizo Kawasaki, MD; Masashi Fukunaga, MD; Machiko Nishimura, MD; Tetsuo Horimatsu, MD; Ten Saita, MD; Hiroto Tamaru, MD; Takahiro Imanaka, MD; Masahiko Shibuya, MD; Motomaru Masutani, MD; Mitsumasa Ohyanagi, MD; Tohru Masuyama, MD


Methods and Results: We retrospectively analyzed 38 de novo SFA lesions from 32 patients who underwent endovascular therapy (EVT) with self-expanding bare-metal nitinol stent (25 lesions: BMS group) or self-expanding paclitaxel-eluting nitinol stents (13 lesions; PES group). At 6 months after EVT, follow-up IVUS was done to evaluate NIH. Serial IVUS volumetric analysis was done after stent deployment and at follow-up. Mean stent, lumen and neointimal areas were calculated as the volume divided by the stent length. The primary endpoint of this study was neointimal areas were calculated as the volume divided by the stent length. The primary endpoint of this study was

mean late lumen loss at 6-month follow-up. The mean follow-up period was 189±39 days. Mean neointimal area was smaller in the PES group compared to the BMS group (3.3±1.0 mm² vs. 10.2±4.1 mm², P<0.001). Mean late lumen loss was significantly lower in the PES group compared to the BMS group (-2.3±3.7 mm² vs. 2.1±4.7 mm², P<0.05).


Conclusions: EVT with DES in SFA lesions might decrease NIH associated with ISR in short-term follow-up. (Circ J 2014; 78: 1451-1458)

Key Words: Endovascular therapy; Intravascular ultrasound; Paclitaxel-eluting nitinol stent; Restenosis; Superficial femoral artery

Change in Stented Segment

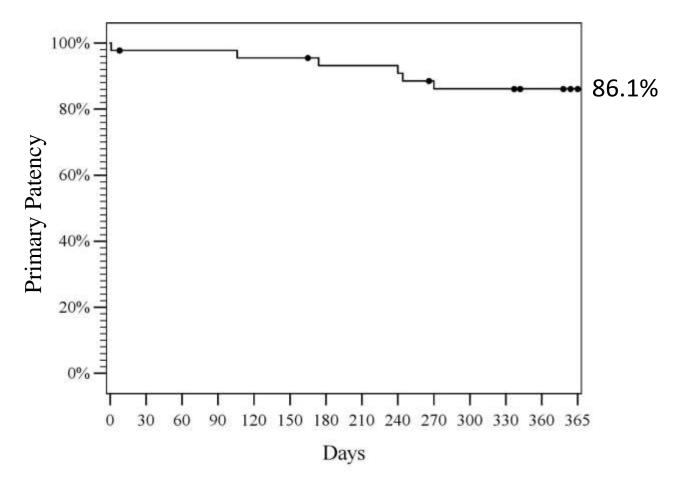
5-year Freedom from TLR Zilver PTX vs. Standard Care

At 5 years, Zilver PTX demonstrates a 48% reduction in reintervention compared to standard care

12-Month Results with Zilver PTX[®] in Long Femoropopliteal Lesions

Thomas Zeller, M.D.

Clinical and Interventional Angiology Herz-Zentrum Bad Krozingen, Germany


Baseline Lesion Characteristics

Lesions	45	
Lesion length (mm) ¹	189.3 ± 91.1	
Diameter stenosis (%) ¹	95.4 ± 11.1	
Total occlusions ¹	82.2%	
De novo lesions	97.8%	
Lesion calcification ¹ None		11.1%
Mild		33.3%
Moderate		15.6%
	Severe	40.0%

¹Angiographic core lab assessment

- No procedure- or device-related mortality (0/45 patients)
- 86.1% event-free survival (freedom from death, amputation, TLR, worsening Rutherford classification)

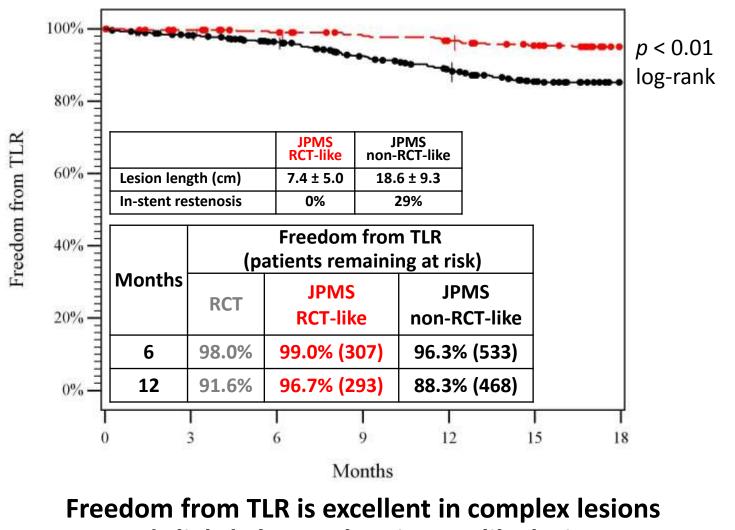
12-Month Primary Patency

Similar to 12-month Kaplan-Meier patency estimates in RCT and SAS pre-market studies

Patient Demographics and Comorbidities

	Zilver PTX RCT	JPMS RCT-like	JPMS non-RCT-like	<i>p</i> -value
Patients	236	324	583	-
Age (years)	68 ± 10	73 ± 9	74 ± 8	NS
Male	66%	73%	69%	NS
Diabetes	50%	58%	59%	NS
High cholesterol	76%	59%	62%	NS
Hypertension	89%	86%	85%	NS
Pulmonary disease	19%	8%	8%	NS
Renal disease ¹	10%	42%	45%	NS

¹ Of patients with renal disease in the Japan PMS, 82% were in renal failure defined as eGFR< 60 and/or dialysis


No significant differences between RCT-like and non-RCT-like patients

Baseline Lesion Characteristics

		Zilver PTX RCT	JPMS RCT-like	JPMS non-RCT-like	<i>p</i> -value	
Lesions		247	378	703	-	
Lesion length (cm)		6.6 ± 3.9	7.4 ± 5.0	18.6 ± 9.3	< 0.001	
Diameter stenosis (%)		80 ± 17	89 ± 12	93 ± 9	< 0.001	
Total occlusions		30%	28%	49%	< 0.001	
In-stent restenosis		0%	0%	29%	< 0.001	
	0	0%	0%	10%		
Patent runoff vessels	1	22%	29%	33%	< 0.001	
	2	35%	36%	30%	< 0.001	
	3	42%	34%	27%		

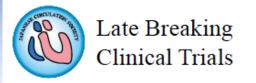
Non-RCT-like lesions are significantly more complex than RCT-like lesions

Freedom from TLR

and slightly lower than in RCT-like lesions

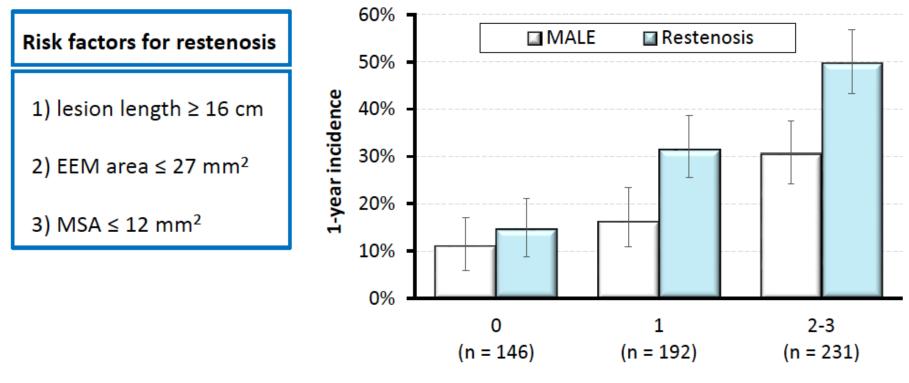
Primary Patency by Duplex Ultrasonography

Study Comparison

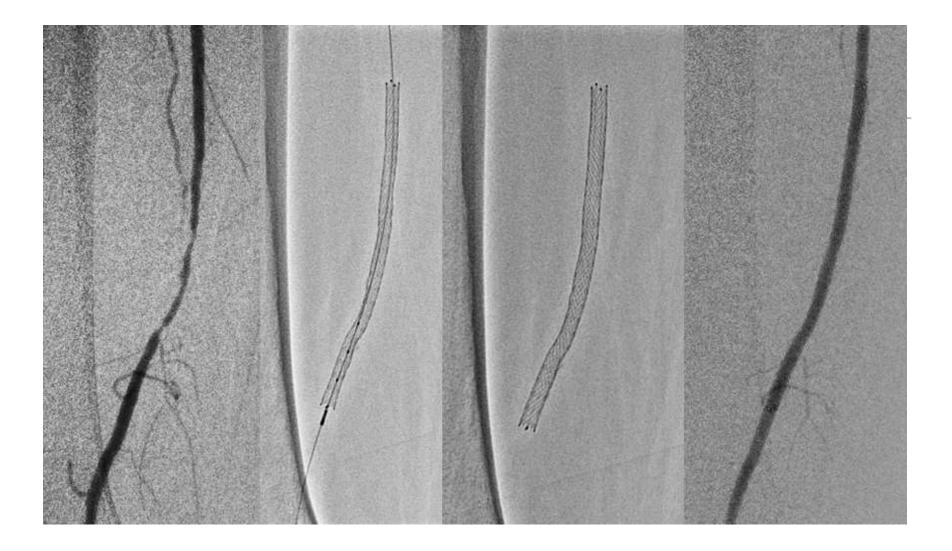

	Zilver PTX RCT ¹	Zilver PTX SAS ²	Zilver PTX Longer Lesions	Japan PMS RCT-like	Japan PMS non-RCT- like	Durability 200 ⁴
Patients	236	787	45	324	583	100
Lesions	247	900	45	378	703	100
Lesion length (cm)	6.6 ± 3.9	10.0 ± 8.2	18.9 ± 9.1	7.4 ± 5.0	18.6 ± 9.3	24.2
Total occlusions	30%	38%	82.2%	28%	49%	N/A
In-stent restenosis	0%	15%	0%	0%	29%	0%
Study Outcomes						
Thrombosis/Occlusion	1.9%ª	2.7%ª	2.2% ^b	1.1%ª	4.3%ª	5.0% ^c
1-year Freedom from TLR ^a	90.8%	89.3%	86.1%	96.7%	88.3%	68.2%
1-year Primary Patency ^a	82.7% (PSVR < 2.0)	82.8% (PSVR < 2.0)	86.1% (PSVR < 2.0)	91.0% (PSVR < 2.4)	81.0% (PSVR < 2.4)	64.8% (PSVR < 2.4)

^a Kaplan Meier estimate at 12 months, ^b 12-month thrombosis rate, ^c 30-day thrombosis rate

Zilver PTX TLR and patency rates in complex lesions from Japan PMS compare favorably to published BMS results in complex lesions. Thrombosis/occlusion rates in complex lesions appear similar for Zilver PTX and BMS.


1. Dake MD, et al. Circ Cardiovasc Interv. 2011;4:495-504.

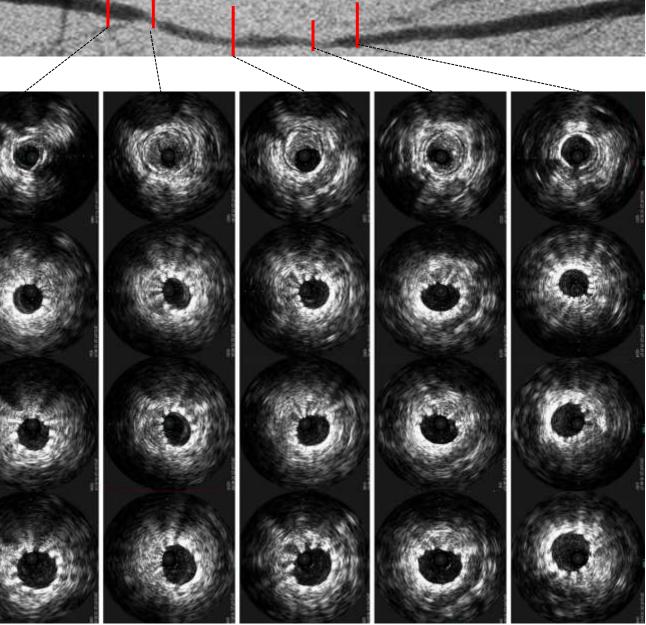
- 3. Bosiers M, et al. J Cardiovasc Surg (Torino). 2013;54:115-22.
- 2. Dake MD, et al. J Endovasc Ther. 2011;18:613-23.
- 4. Bosiers M, et al. JVS. 2011;54-1042-1050.


No. of Risk Factors & Restenosis/MALE Incidence

Number of risk factors

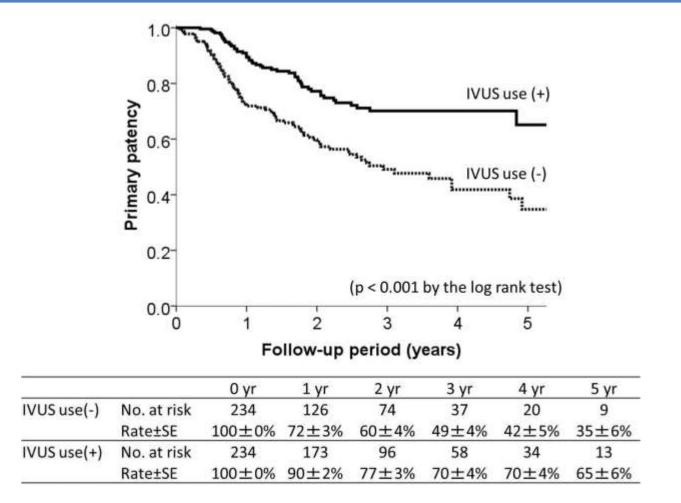
1-year restenosis rate was as low as 15% in cases with none of these risk factors, whereas it reached 51% in those with ≥ 2 risk factors 69 y.o male Rt. SFA Rutherford 3 TASC || : A Prior CABG, HTN, DM, SMK

Pre balloon : Shiden 4.0/40mm STENT : Zilver PTX 6.0/120mm Post balloon : Senri 5.0



ANGIO

Post STENT


Post 8 atm

Post 16 atm

The Power of IVUS

Conclusion: IVUS use in femoro-popliteal stenting for TASC II class A to C lesions was associated with a higher rate of primary patency in PAD patients.

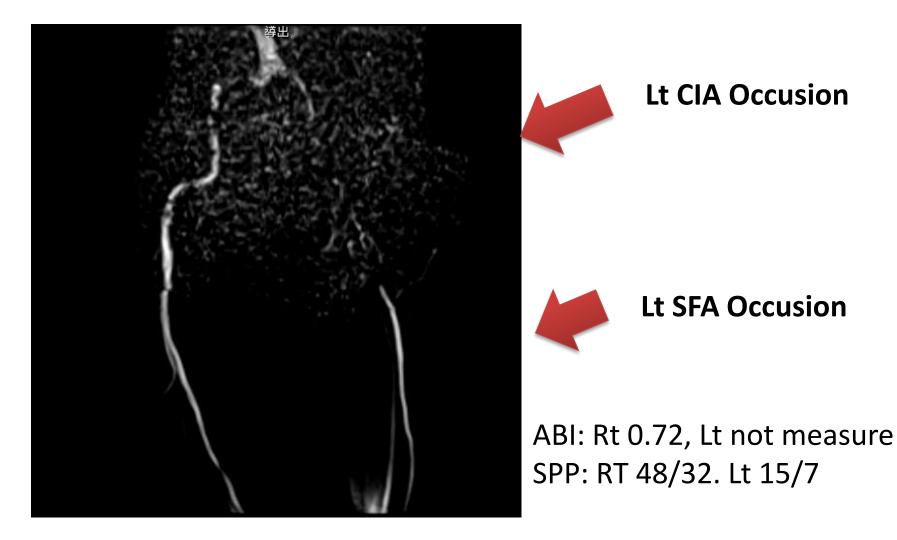
Advantages of IVUS Guided Intervention

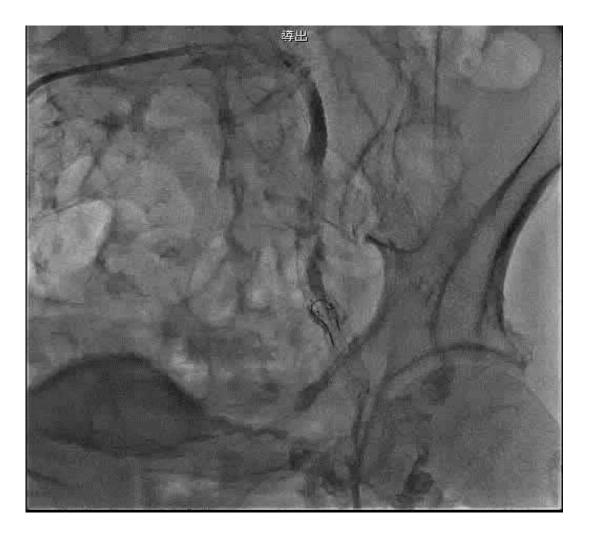
Pre-intervention

- 1) High probability to capture the true lumen
- 2) Identify proximal and distal reference segment landing zones and accurately select stent length
- 3) Accurately measure and lumen size to maximize stent dimensions
- 4) Determine when debulking should be considered

Post-intervention

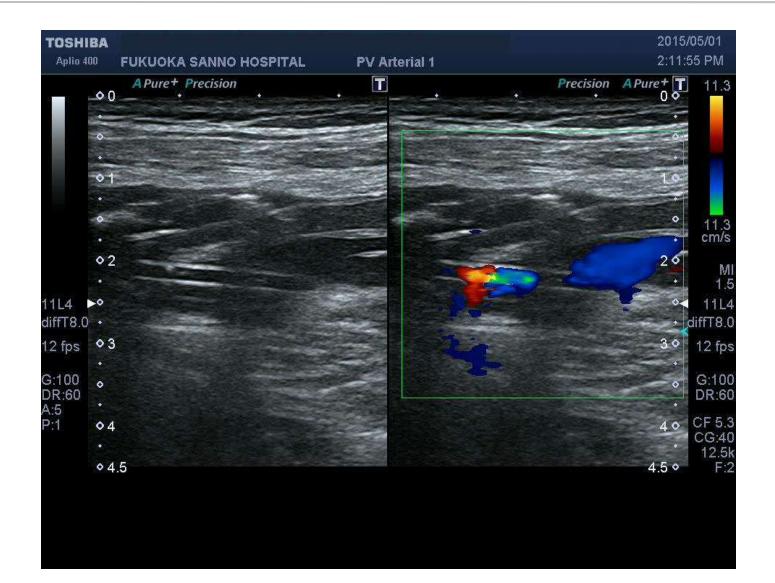
- 1) Maximize stent CSA relative to reference
- 2) Ensure full lesion coverage
- 3) Recognize, diagnosis and treat complications


80s male, CLI without dialysis

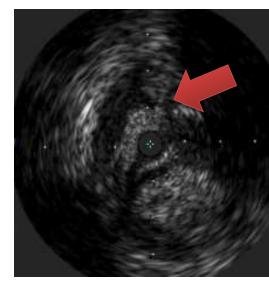

Infective gangrene on 4th toe

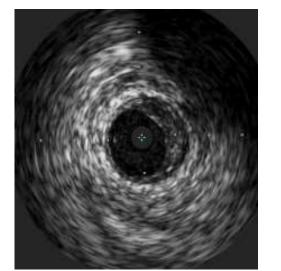
Risk factors Type II DM, Hypertension Hyperlipidemia Previous History of Post CABG Post CVA Severe AS

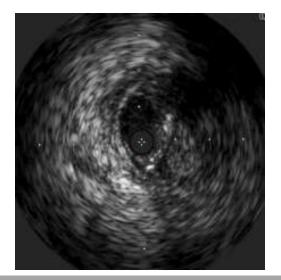

Lower extremities MRA

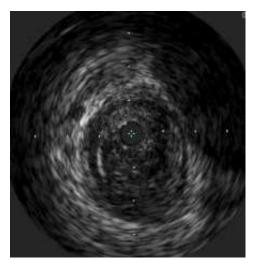

Final Ango (1st session)

0.018 Treasure GW manipulation with 4F CXI catheter through novel side-grooved sheath by surface echo guidance

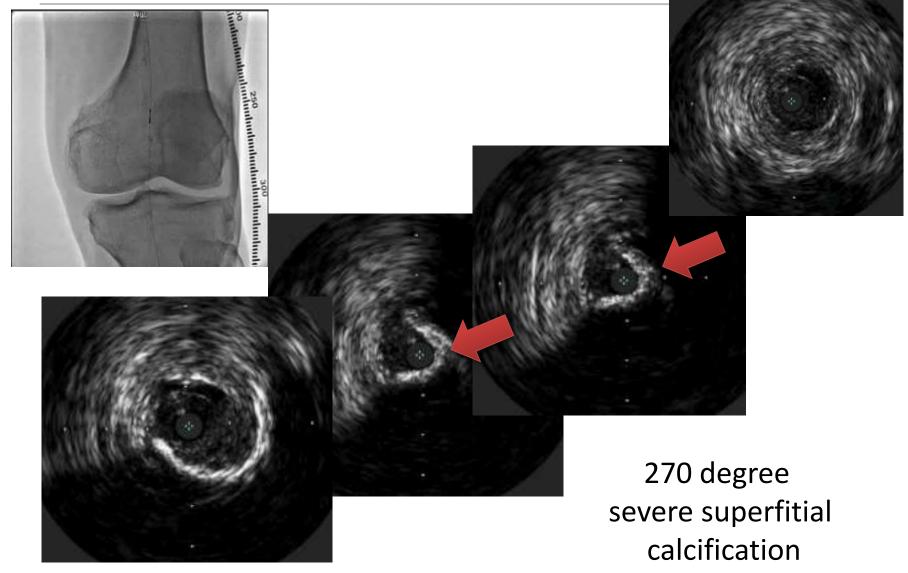

Echo guide (SFA-DFA Bif)


1st IVUS after BA

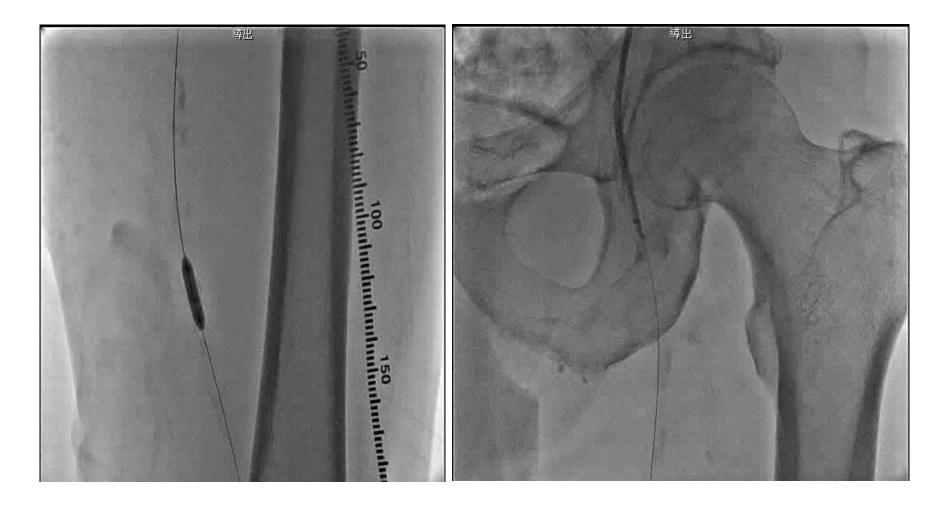

High probability to capture the true lumen



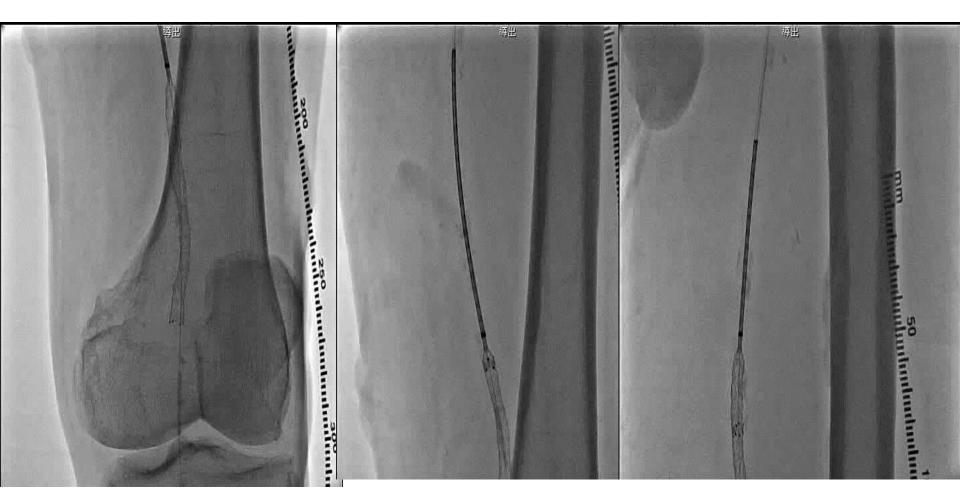
Subintimal Space



SFA CTO BA 2nd (Ultraverse : 4.0 × 220mm)

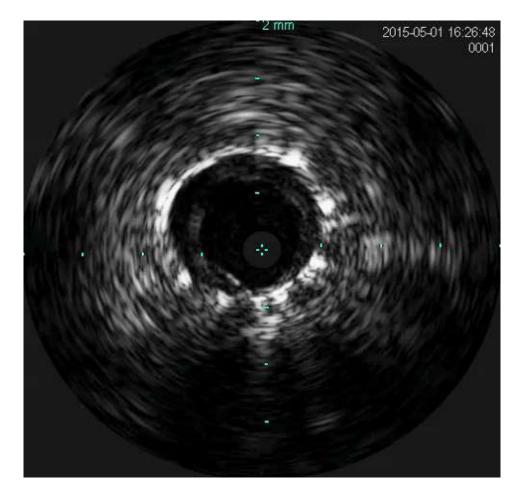


2nd IVUS after BA


Determine when lesion preparation should be considered

Lesion Preparation (Cutting BA 4.0 × 15mm)

DES Implantation

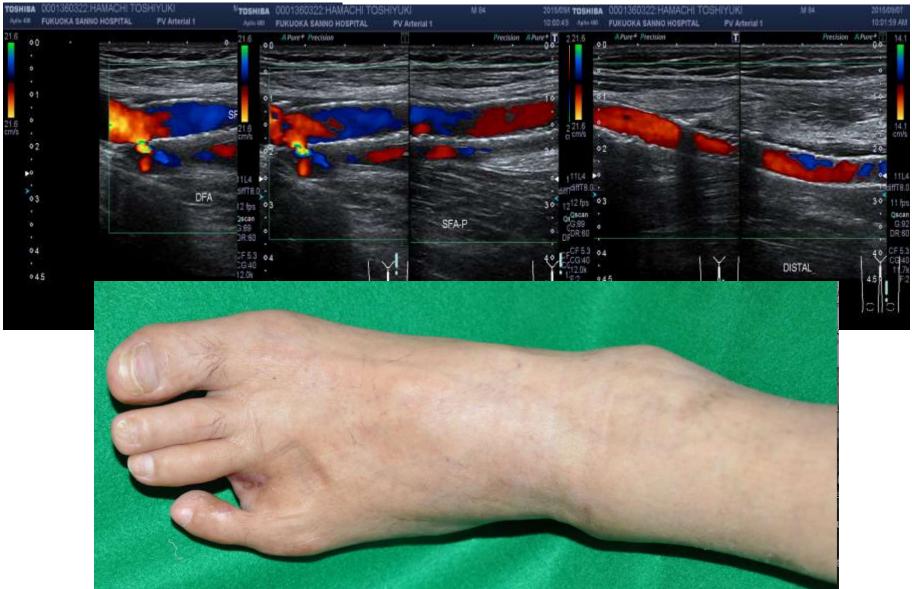

Zilver PTX $(6.0 \times 100 \text{ mm})$

Zilver PTXZilva PTX(6.0 × 100mm)(7.0 × 100mm)

Post Stent dilatation with high-pressure (18atm) BA dilatation (5.0 × 100mm)

IVUS (Post BA)

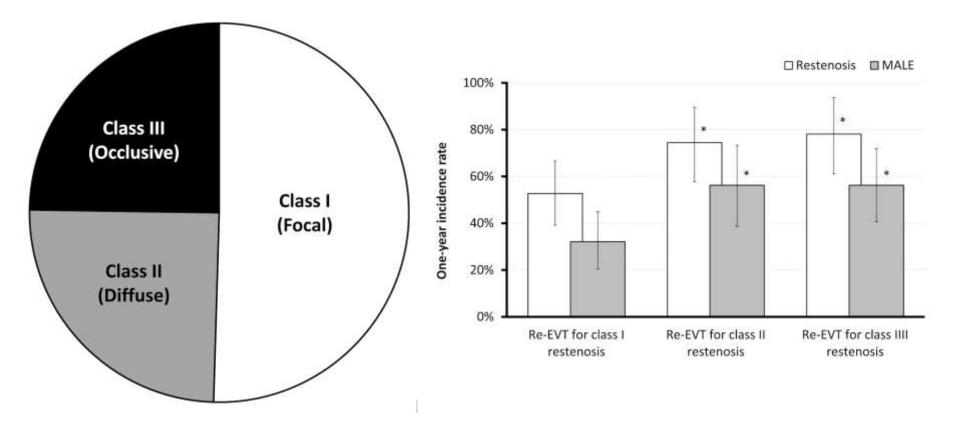
Final Angio



After minor amputation, wound was completely healed

18 months later (No restenosis)

Leave the *right thing* behind in SFA TASC-C/D lesions


• Stent Integrity

• Safety (no increased stent thrombosis)

• Anti-restenosis effect

<u>Pattern of restenosis</u>

The characteristics of in-stent restenosis after drug eluting stent implantation in femoropopliteal lesions and 1-year prognosis after repeat endovascular therapy for these lesions"

lida O, JACC Cardiovasc Interv. 2016;9(8):828-34

Leave the *right thing* behind in SFA TASC-C/D lesions

- Stent Integrity
 Very low
- Safety

No increased stent thrombosis

- Anti-restenosis effect
 Excellent than BMS in simple & complex lesion
- Pattern of restenosis
 Benign

FT

Knowledge Capital Congres Convention Center, Grand Front Osaka

Yoshiaki Yokoi MD. FJCC, FSCAL FACC Departments of Cardiology.Kishiwada Tokushukai Hospital