TAVR for Bicuspid Aortic Valve

Sung-Han Yoon, MD Cedars-Sinai Heart Institute, Los Angeles, California

Disclosure Statement of Financial Interest

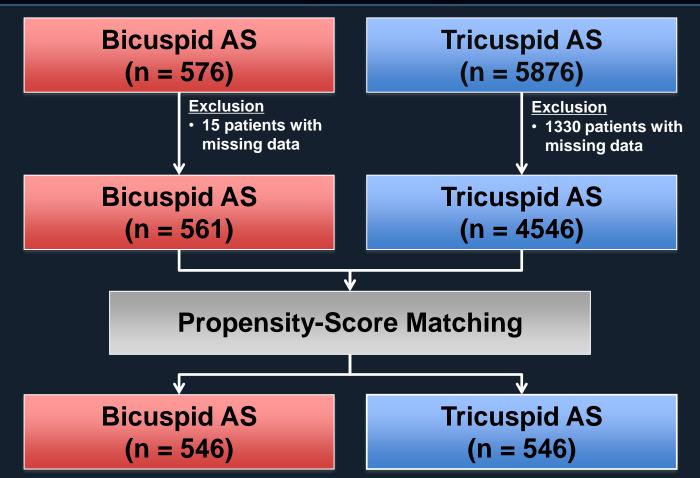
Sung-Han Yoon, MD

Within the past 12 months, I or my spouse/partner have had no financial interest/arrangement or affiliation with any organization(s).

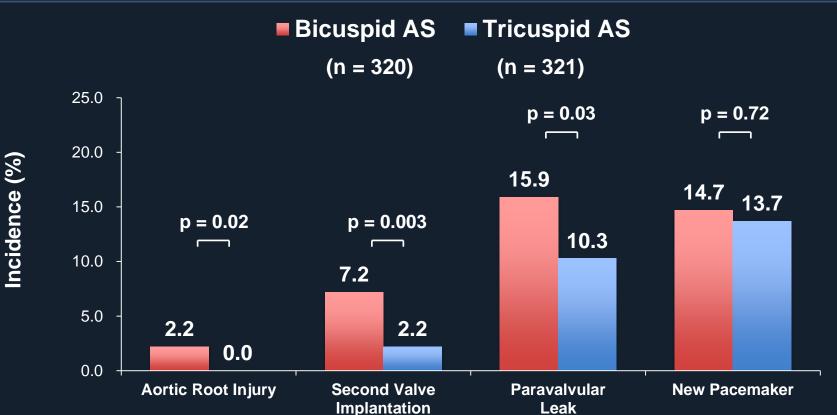
Background

- TAVR indication is expanding into a lower-risk population
- The prevalence of bicuspid aortic valve is higher in a younger population
- Bicuspid AS has been excluded from randomized trials
- There is limited data assessing the outcomes of TAVR in Bicuspid AS

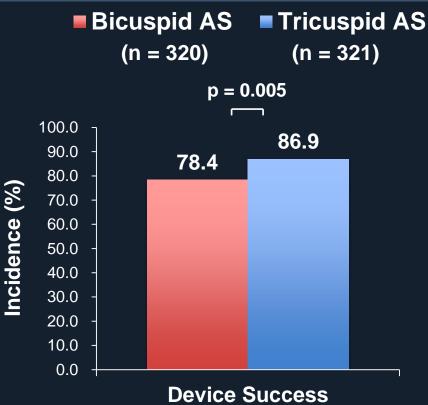
Background Recent Published study


ORIGINAL INVESTIGATIONS

Outcomes in Transcatheter Aortic Valve Replacement for Bicuspid Versus Tricuspid Aortic Valve Stenosis


Sung-Han Yoon, MD, ⁶ Sabine Bleiziffer, MD,⁶ Ole De Backer, MD,⁷ Victoria Delgado, MD,⁴ Takahide Arai, MD,⁹ Johannes Ziegelmueller, MD,⁶ Marco Barbanti, MD,⁷ Rahul Sharma, MD,⁸ Gidon Y. Perlman, MD,⁸ Omar K. Khalique, MD,¹⁶ Erik W. Holy, MD,¹ Smriti Saraf, MD,¹ Florian Deuschl, MD,⁸ Buntaro Fujita, MD,¹ Philipp Ruile, MD,¹⁶ Franz-Josef Neumann, MD,¹⁷ Gregor Pache, MD,⁶ Masao Takahashi, MD,⁶ Hidehiro Kaneko, MD,¹⁷ Tobias Schmidt, MD,¹⁶ Yohei Ohno, MD,⁸ Niklas Schofer, MD,¹⁶ William K.F. Kong, MD,⁴⁷ Edgar Tay, MD,⁷ Daisuke Sugiyama, MD,⁸ Hiroyuki Kawamori, MD,⁹ Yoshio Maeno, MD,⁹ Yigal Abramowitz, MD,¹⁰ Tarun Chakravarty, MD,⁸ Marnoo Nakamura, MD,¹⁵ Shingo Kuwata, MD,¹⁶ Gerald Yong, MD,¹⁶ Hsien-Li Kao, MD,¹⁶ Michael Lee, MD,¹⁶ Hyo-Soo Kim, MD,¹⁷ Thomas Modine, MD,¹⁷ S. Chiu Wong, MD,⁹ Francesco Bedgoni, MD,⁸⁶ Luca Testa, MD,¹⁶ Emmanuel Teiger, MD,¹⁰ Christian Butter, MD,¹⁰ Stephan M. Ensminger, MD,¹ Ulrich Schaefer, MD,¹⁶ Danny Dvir, MD,⁸ Philipp Blanke, MD,¹⁶ Jonathon Leipsic, MD,⁶ Fabian Nietlispach, MD,¹ Mohamed Abdel-Wahab, MD,¹⁶ Bernard Chevalier, MD,¹⁶ Corrado Tamburino, MD,¹⁷ David Hildick-Smith, MD,¹⁶ Brian K. Whisenant, MD,¹⁶ Seung-Jung Park, MD,¹⁶ Antonio Colombo, MD,¹⁶⁴ Azeem Latib, MD,¹⁶⁴ Susheel K. Kodali, MD,¹⁶ Jeroen J. Bax, MD,¹⁶ Antonio Colombo, MD,¹⁶⁴ John G. Webb, MD,⁹ Thierry Lefèvre, MD,⁸ Martin B. Leon, MD,¹⁶ Raj Makkar, MD⁹

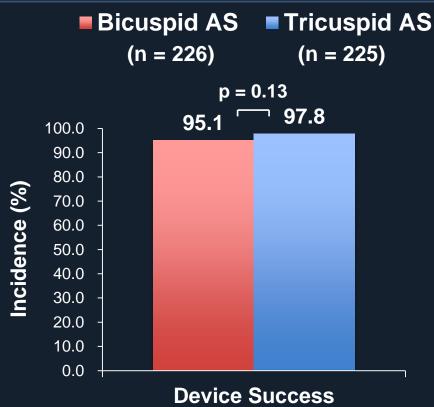
Study Design


Procedural Outcomes Early Generation Devices

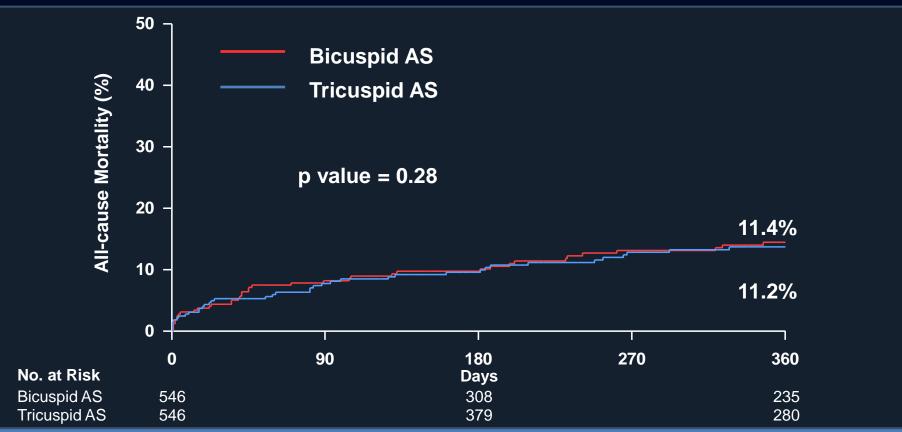
Procedural Outcomes Early Generation Devices

Procedural Outcomes New Generation Devices

Bicuspid AS Tricuspid AS (n = 226)(n = 225)25.0 p = 0.6920.0 17.8 16.4 15.0 p = 0.50p = 0.62p = 0.5310.0 5.0 2.7 1.8 1.3 0.9 0.4 0.0 0.0 **Aortic Root Injury** Second Valve Paravalvular **New Pacemaker**


Implantation

Leak


Incidence (%)

Procedural Outcomes New Generation Devices

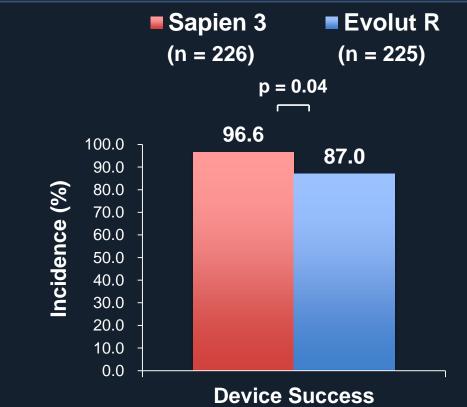
1-year All-cause Mortality Overall Propensity Matched Cohort

Summary

- Among patients receiving early generation devices, bicuspid AS had more frequent *aortic root injury* and moderate-severe *paravalvular leak*
- Among patients receiving new generation devices, procedural outcomes were similar between bicuspid and tricuspid AS
- All-cause mortality rates at 1-year were similar between bicuspid and tricuspid AS

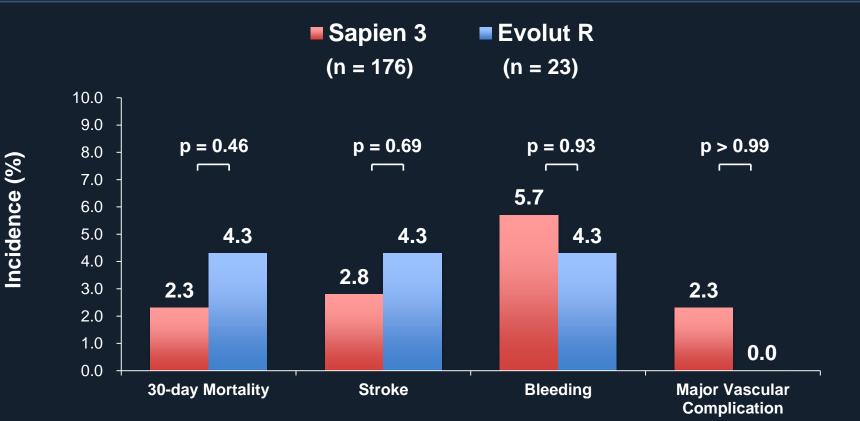
Outcomes According to Device Type

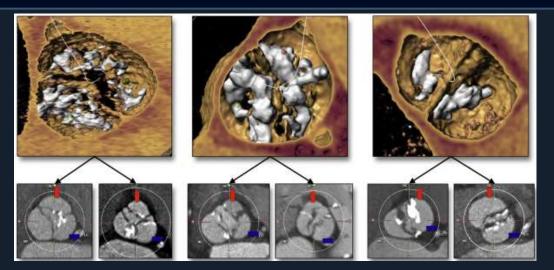
Procedural Outcomes Sapien 3 vs Evolut R


Evolut R Sapien 3 (n = 176)(n = 23)25.0 **p** = 0.88 20.0 p = 0.0914.2 15.0 13.0 p = 0.31 8.7 10.0 p > 0.99 4.3 5.0 2.3 1.1 1.1 0.0 0.0 **Aortic Root Injury** Second Valve **Paravalvulear Leak New Pacemaker**

Implantation

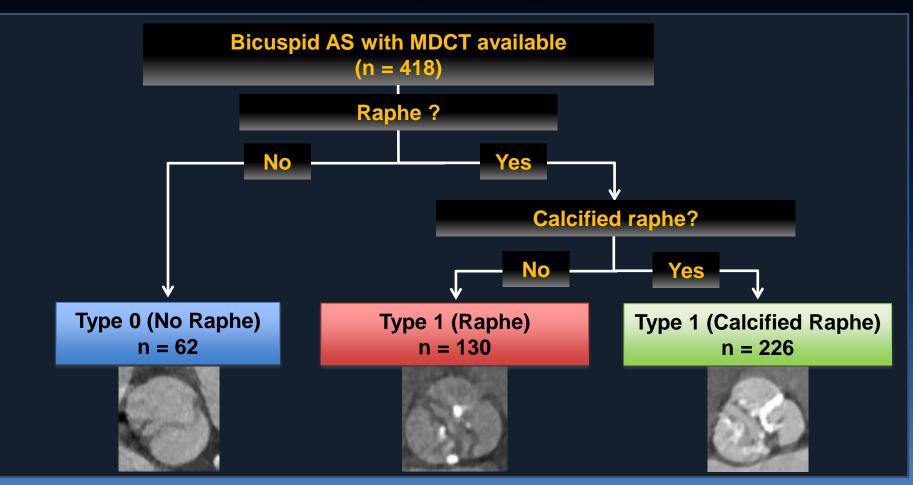
Incidence (%)


Procedural Outcomes New Generation Devices



Clinical Outcomes Sapien 3 vs Evolut R

Bicuspid AV Morphology


Hasan Jilaihawi et al; JACC: Cardiovascular Imaging, Volume 9, Issue 10, 2016, 1145–1158

Limited data exists about the impact of bicuspid morphology and outcomes of TAVR

Methods

- The Bicuspid AS TAVR multicenter registry was used to evaluate procedural and clinical outcomes
- Bicuspid aortic valve morphology was defined by independent analysis of computed tomography images
- Procedural and clinical outcomes were assessed according to VARC-2 criteria

Study Design

Baseline Characteristics Demographics

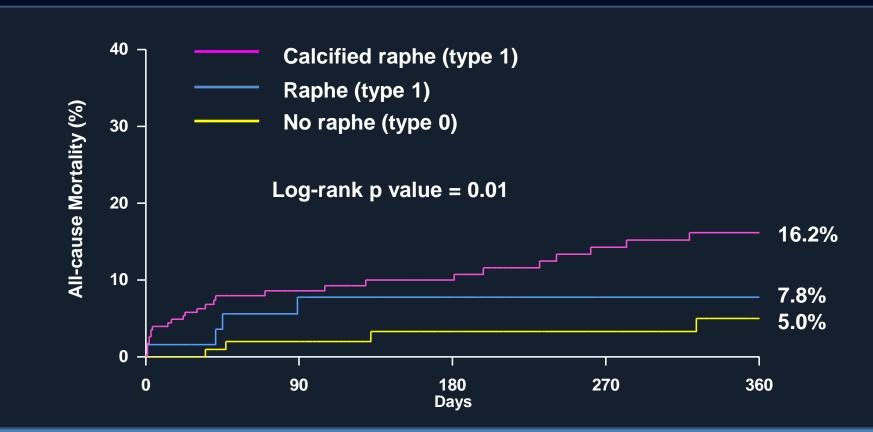
	Type 0 No raphe (n = 62)	Type 1 Raphe (n = 130)	Type 1 Calcified Raphe (n = 72)	P value
Age, years	75 ± 8	77 ± 9	76 ± 9	0.18
Male	65%	56%	66%	0.15
NYHA class III / IV	69%	80%	79%	0.24
LVEF, %	50.9 ± 16.1	54.1 ± 15.4	50.8 ± 15.9	0.15
Mean gradient, mm Hg	26.9 ± 15.8	26.2 ± 15.6	28.2 ± 16.2	0.44
STS score, %	4.5 ± 5.6	4.1 ± 3.2	5.2 ± 5.3	0.09
Logistic EuroSCORE, %	12.7 ± 11.8	15.4 ±11.1	14.3 ±12.3	0.50

Baseline Characteristics Demographics

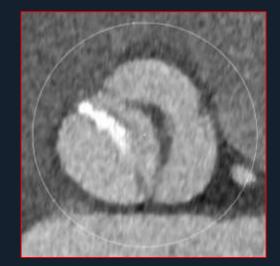
	Type 0 No raphe (n = 62)	Type 1 Raphe (n = 130)	Type 1 Calcified Raphe (n = 72)	P value
Diabetes mellitus	24%	22%	24%	0.95
Hypertension	65%	56%	66%	0.63
COPD	21%	24%	20%	0.68
PVD	21%	19%	13%	0.23
Prior PCI	16%	19%	21%	0.67
Prior CABG	15%	12%	11%	0.70
Prior CVA	19%	14%	17%	0.59

Baseline Characteristics Procedure

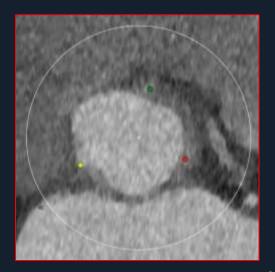
	Туре 0	Type 1	Type 1	
	No raphe (n = 62)	Raphe (n = 130)	Calcified Raphe (n = 72)	P value
Transfemoral access	81%	88%	89%	0.18
Device				
Early generation devices	69%	50%	53%	0.03
CoreValve	47%	19%	24%	< 0.001
Sapien XT	23%	32%	29%	0.44
New generation devices	31%	50%	47%	0.03
Sapien 3	23%	40%	38%	0.05
Lotus	8%	7%	5%	0.55
Evolut R	0%	3%	4%	0.23


Procedural Outcomes

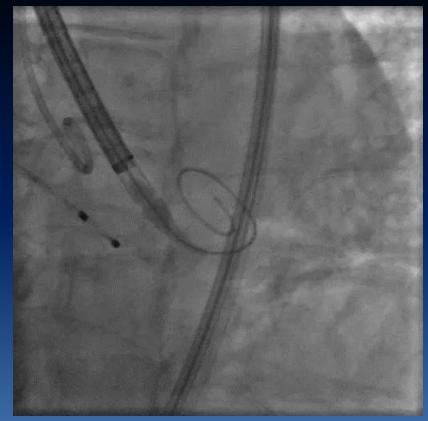
	Type 0 No raphe (n = 62)	Type 1 Raphe (n = 130)	Type 1 Calcified Raphe (n = 72)	P value
Device success	87.1%	90.8%	83.6%	0.17
Second valve implantation	6.5%	1.5%	5.8%	0.14
Conversion to surgery	1.6%	1.5%	2.7%	0.89
Coronary obstruction	3.2%	0.8%	0.9%	0.29
New permanent pacemaker	11.3%	16.2%	19.0%	0.34
PVL ≥ moderate	6.5%	7.7%	11.1%	0.40
Annulus rupture	0.0%	0.8%	2.7%	0.36
Procedural mortality	1.6%	0.0%	2.7%	0.17

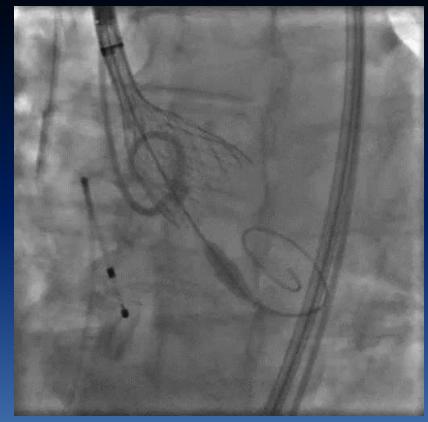

30-day Clinical Outcomes

	Type 0 No raphe (n = 62)	Type 1 Raphe (n = 130)	Type 1 Calcified Raphe (n = 72)	P value
30-day mortality	1.6%	0.0%	6.2%	0.003
Stroke	0.0%	3.1%	2.2%	0.52
Life-threatening bleeding	0.0%	0.0%	2.7%	0.13
Major vascular complication	0.0%	2.3%	4.9%	0.15
AKI (stage 2 or 3)	1.6%	2.3%	1.8%	0.89


1-year All-cause Mortality Overall Cohort

Case Presentation 1

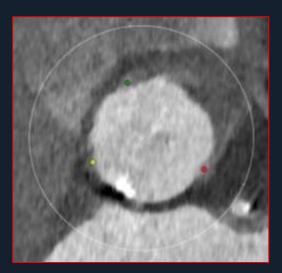

Raphe in LR



Annulus Area: 445 mm² Annulus Perimeter: 76 mm Max Diameter: 25.8 mm Min Diameter: 21.7 mm

Device Sizing Chart Evolut R

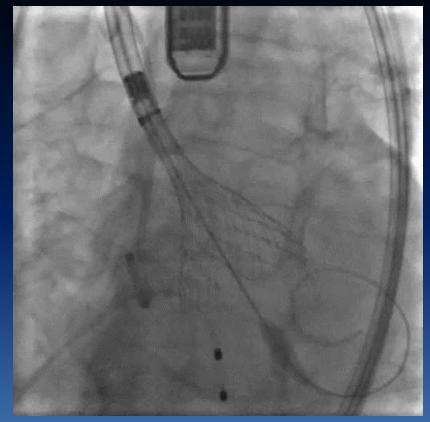
Valve size , mm	23	26	29	34
Annulus Diameter, mm	18 - 20	20 - 23	23 - 26	26 – 30
Annulus Perimeter, mm	56.5 - 62.8	62.8 - 72.3	72.3-81.7	81.7 - 94.2
SOV diameter (mean), mm	≥ 25	≥ 27	≥ 29	≥ 31
SOV height, mm	≥ 15	≥ 15	≥ 15	≥ 16
Sheath Size (OD)	14 F	14 F	14 F	16 F
Min Vessel Diameter, mm	5	5	5	5.5

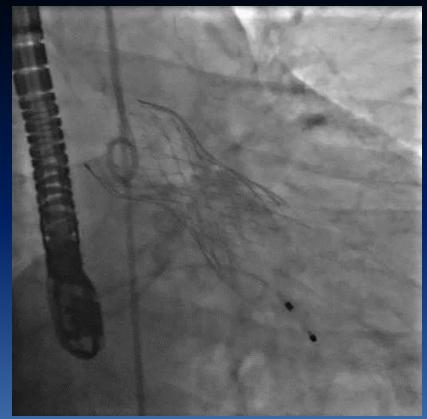


None – trivial PVL, No need for PPM

Case Presentation 2

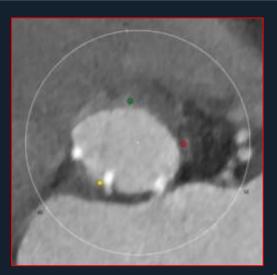
Calcified raphe in NR




Annulus Area: 594 mm² Annulus Perimeter: 87 mm Max Diameter: 27.8 mm Min Diameter: 27.2 mm

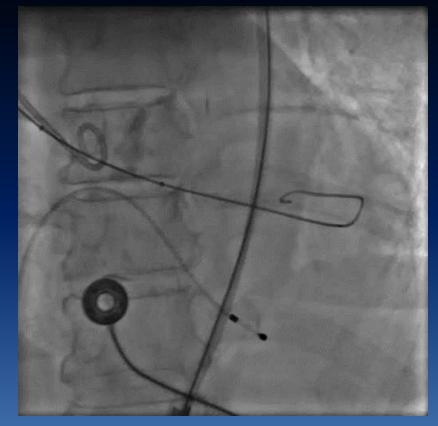
Device Sizing Chart Evolut R

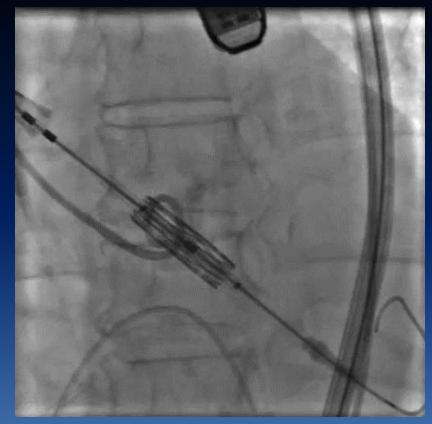
Valve size , mm	23	26	29	34
Annulus Diameter, mm	18 - 20	20 - 23	23 - 26	26 – 30
Annulus Perimeter, mm	56.5 - 62.8	62.8 - 72.3	72.3-81.7	81.7 - 94.2
SOV diameter (mean), mm	≥ 25	≥ 27	≥ 29	≥ 31
SOV height, mm	≥ 15	≥ 15	≥ 15	≥ 16
Sheath Size (OD)	14 F	14 F	14 F	16 F
Min Vessel Diameter, mm	5	5	5	5.5

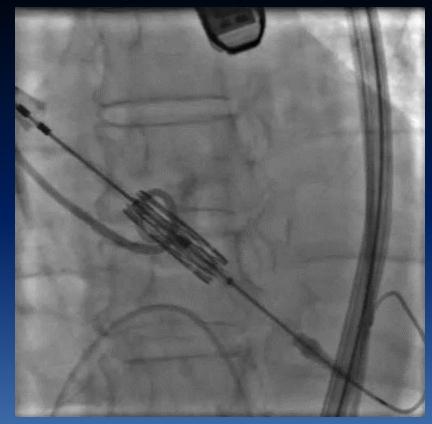


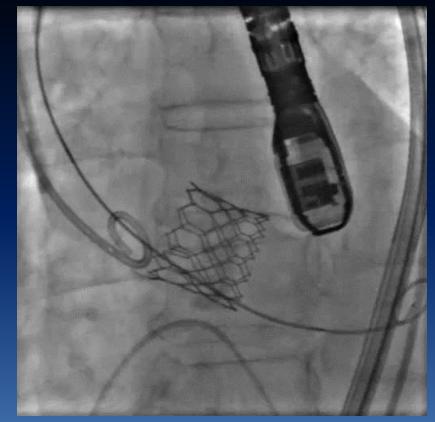
Mild PVL, No Need for PPM

Case Presentation 3

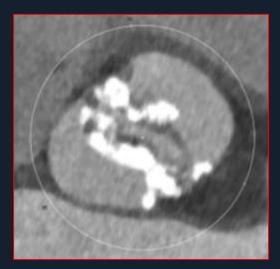

Type 1 (Calcified Raphe)

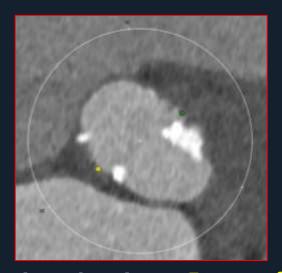



Annulus Area: 369 mm² Annulus Perimeter: 70 mm Max Diameter: 25.9 mm Min Diameter: 17.8 mm


Device Sizing Chart SAPIEN 3

Valve size , mm	20	23	26	29
Nominal area, mm ²	328	409	519	649
Device height, mm	15.5	18	20	22.5
Annulus Area, mm²	273 - 345	338 – 430	430 – 546	540 – 683
Area-derived diameter, mm	18.6 - 21.0	20.7 - 23.4	23.4 - 26.4	26.2 - 29.5
Sheath Size (OD)	14 F	14 F	14 F	16 F
Min Vessel Diameter, mm	5.5	5.5	5.5	6.0

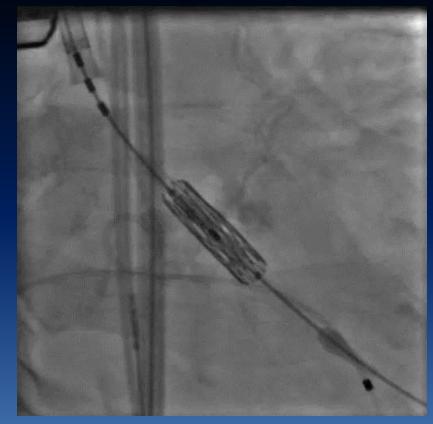




Mild PVL

Case Presentation 4

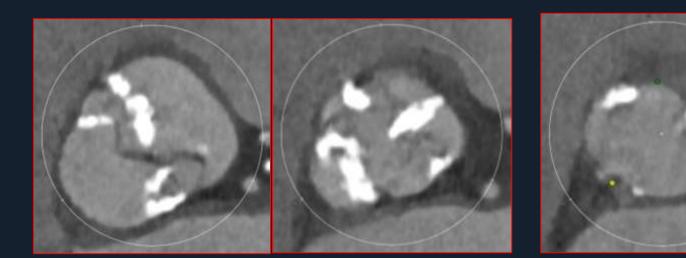
Type 0 (No Raphe)

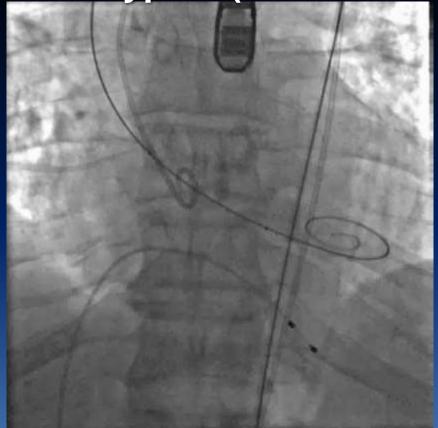


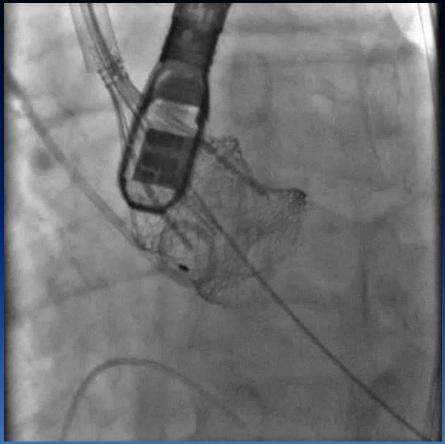
Annulus Area: 563 mm² Annulus Perimeter: 87 mm Max Diameter: 33.0 mm Min Diameter: 21.5 mm

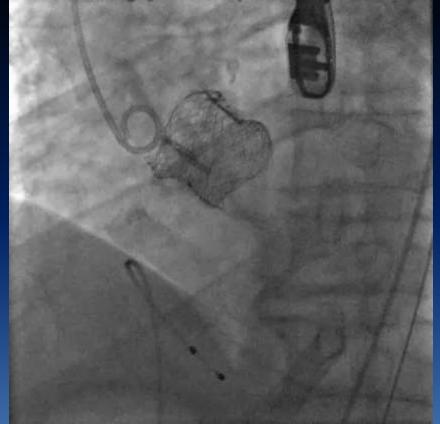
Device Sizing Chart SAPIEN 3

Valve size , mm	20	23	26	29
Nominal area, mm ²	328	409	519	649
Device height, mm	15.5	18	20	22.5
Annulus Area, mm²	273 - 345	338 – 430	430 – 546	540 – 683
Area-derived diameter, mm	18.6 - 21.0	20.7 - 23.4	23.4 - 26.4	26.2 - 29.5
Sheath Size (OD)	14 F	14 F	14 F	16 F
Min Vessel Diameter, mm	5.5	5.5	5.5	6.0




Mild PVL


Case Presentation 5



Calcified raphe in LR

Annulus Area: 551 mm² Annulus Perimeter: 84 mm Max Diameter: 29.9 mm Min Diameter: 23.9 mm

No PVL, No need for PPM

Conclusions

- TAVR for bicuspid AS was feasible and safe
- When using early-generation devices, TAVR for bicuspid AS was associated with more frequent procedural complications
- However, when using new-generation devices, outcomes of TAVR for bicuspid were similar to those of tricuspid AS

Conclusions

- TAVR for type 0 bicuspid AS was preferable
- TAVR for type 1 bicuspid AS with calcified raphe was challenging
 - New-generation balloon-expandable and self-expanding valves can be applied
 - Intentional down sizing may be considered to avoid catastrophic complications