The Unique Advantages of High Definition IVUS

Gary S. Mintz, MD Cardiovascular Research Foundation

- IVUS technology has been clinically available for over 20 years. Yet...
 - Image quality has not improved in the last 10 years.
 - Poor spatial resolution and catheter-to-catheter imaging inconsistency are problematic.
 - Current IVUS systems are not capable of resolving structures <100 µm (and maybe <150µm) in size.
 - Poor image quality often requires expert interpretation, inhibits confidence in new users, and is a primary obstacle to maximizing growth and adoption of IVUS technology.

What determines image quality?

Transducer Frequency

←Low Frequency

High Frequency \rightarrow

Signal Penetration Depth

EEM, vessel borders, positive remodeling

+ See deeply into vessel tissue

Shallow depth-of-field -

Lumen Visibility

lumen darkness, differentiation of blood speckle from tissue

+ Low blood speckle, easy to identify lumen High blood speckle, less clear lumen borders -

Imaging Resolution

dissection, thrombus, rupture, etc.

- Low resolution, can't distinguish small structures

Crisp detail of small structures +

Tissue Visibility

plaque layering, density of vessel tissue, etc.

- Unable to differentiate tissue

Tissue variations evident +

Pulse Duration and Length

Contrast Resolution

Higher contrast resolution

Lower contrast resolution

Lower contrast resolution Blurred boundary Visible noise Dimness of overall image

Four Companies Are Working on Next Generation IVUS Systems

 ACIST (purchased SVMI - has been working on next generation IVUS since 2007)

- Available

- InfraReDx
 Limited market release
- BostonScientific
- Volcano

Under development

Each is taking a very different approach

ACIST: HD-IVUS

ACIST: HD-IVUS

Measured Axial Resolution	<50 µm	Fibrous Cap (>100 um) Overlying an Acellular Region			
Lateral Resolution	~200 µm	Media (based on histology) (echolucent			
Max. Frame Rate	60 fps	band)			
Max. Pullback Speed	10 mm/sec				
Frame Spacing	5-167 μm				
Pullback length	120 mm				
Tissue Penetration	~3 mm @ 60 Mhz				
Imaging in Blood	Yes				
		Plaque Nedia- Adventitia Border Side Branch (based on histology slides)			

60MHz @ 60 frame/sec Acquisition time: 10 sec Pullback speed: 10.0 mm/sec Pullback length: 96mm 567 Frames acquired (200 viewed) Frame spacing: 167 μm File size: 149 MB (10MB WMV viewed)

>Proximal

Infraredx: Next Generation IVUS

An extended bandwidth transducer is designed to combine the advantages of high and low frequency

Center Frequency and Bandwidths

IVUS Frequency MHz

Catheter	Label Freq.	Center Frequency	Approx Functional Bandwidth	Approx. Functional IVUS Range	Calculated Axial Resolution*
VOLCANO Eagle Eye	20 MHz	20 MHz	40%	16-24 MHz	< 170 microns
VOLCANO Revolution	45 MHz	41.5 MHz	27%	36-47 MHz	50 microns
BSC iCross / Opticross	40 MHz	38.8 MHz	43%	30-47 MHz	43/38 microns
Infraredx Insight (TVC-C195-22)	40 MHz	39.5 MHz	50%	30-50 MHz	40 microns
Infraredx Muller (TVC-C195-32)	50 MHz	50.0 MHz	80%	30-70 MHz	20 microns

*Theoretical estimates based on design:

http://users.tpg.com.au/mcgrath_/Calculators/Axial_Resolution_Calculator.htm

Infraredx: Next Generation IVUS

BostonScientific: HD-IVUS and Bioresorbable Vascular Scaffolds

Pro/iCross 40 MHz 43 micron axial* **OptiCross 40 MHz** 38 micron axial* Next Gen IVUS 55 MHz 22 micron axial*

*Theoretical estimates based on design:

http://users.tpg.com.au/mcgrath_/Calculators/Axial_Resolution_Calculator.htm

Volcano: FACT (Focused Acoustic Computed Tomography) and Bioresorbable Vascular Scaffolds

FACT ultrasound transducer intented to generate a "cleaner" signal than traditional PZT, near field resolution close to OCT, visibility of the entire plaque and vessel wall, and without the need for a blood clearing flush

What is new and different?

Just about everything except the use of ultrasound

- Better resolution and tissue characterization without sacrificing penetration
- Improved system design and user-interface
- More rapid image acquisition
- More accurate longitudinal (L-Mode) reconstruction
- Caveats
 - Necessary to separate imaging and science versus marketing
 - Trust your eyes.
 - Don't trust in vitro images or images obtained in animal models
 - Ask for measured and not theoretical resolution(s)
 - Still works in progress

