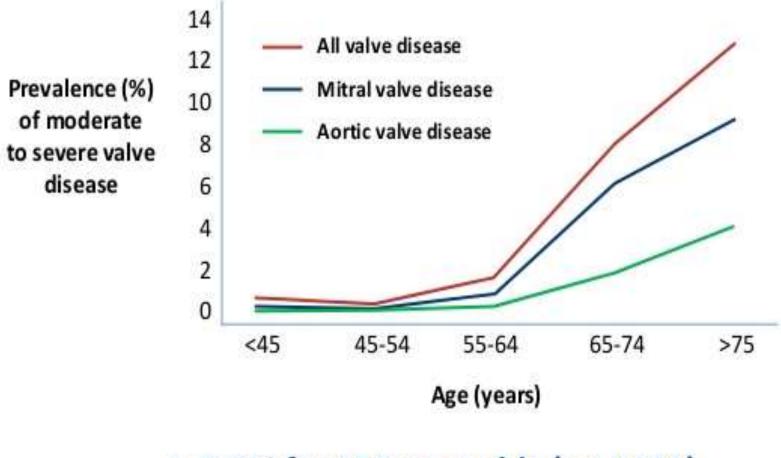
Transcatheter Mitral Valve Replacement Current status

Jian Ye, MD, FRCSC Clinical Professor of Surgery Division of Cardiac Surgery, St. Paul's Hospital University of British Columbia, Vancouver, Canada

AP VALVES, Seoul, August 16-18, 2017

Centre for Heart Valve Innovation St. Paul's Hospital, Vancouver



Disclosure

Consultant:

Edwards Lifesciences JC Medical Inc.

MR more prevalent than AS

> 9.3% for ≥75 year olds (p<.0001)

Nicomo et al. Burden of Valvular Heart Diseases: A Population-based Study, Lancet, 2006; 368: 1005-11.

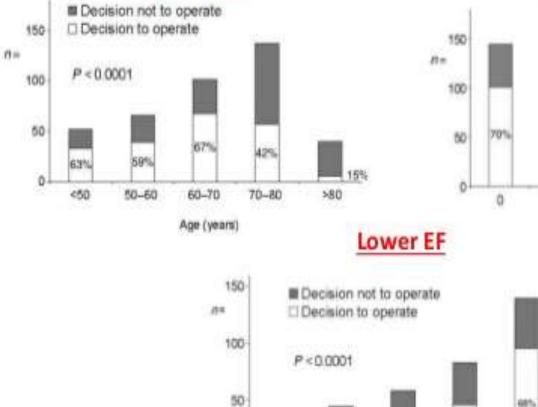
Severe, symptomatic MR: Half of patients do not undergo surgery?

68%

60-60

>60

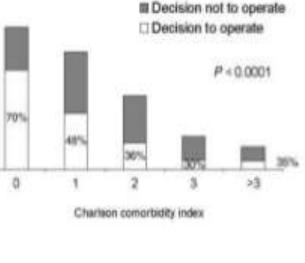
60%

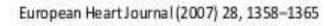

40-50

Left ventricular ejection fraction (%)

1855

30-40

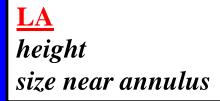

Older age



0

<30

Comorbid conditions



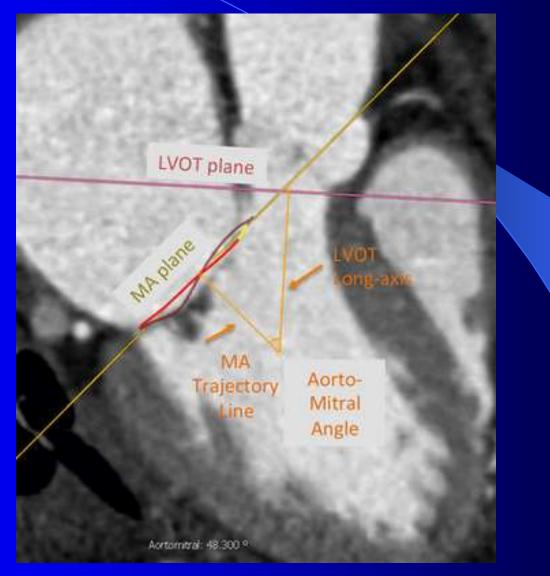
Etiology of MR

Acute	Chronic Primary	Chronic Secondary
Chordal rupture	Myxomatous	Ischemic
Endocarditis	Endocarditis	Dilated cardiomyopathy
Papillary muscle rupture	Mitral annular/leaflet calcification	
Trauma	Congenital (claft)	
Acute MI	Rheumatic	
	Radiation	
	Collagen vascular disease	

CT Assessment

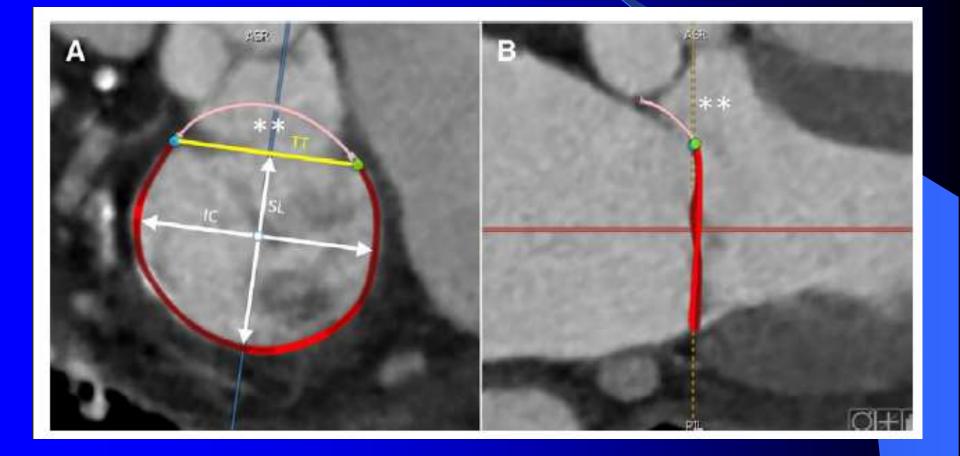
Leaflets height calcification commissure

LVOT aorto-mitral angle septum thickness Neo-LVOT

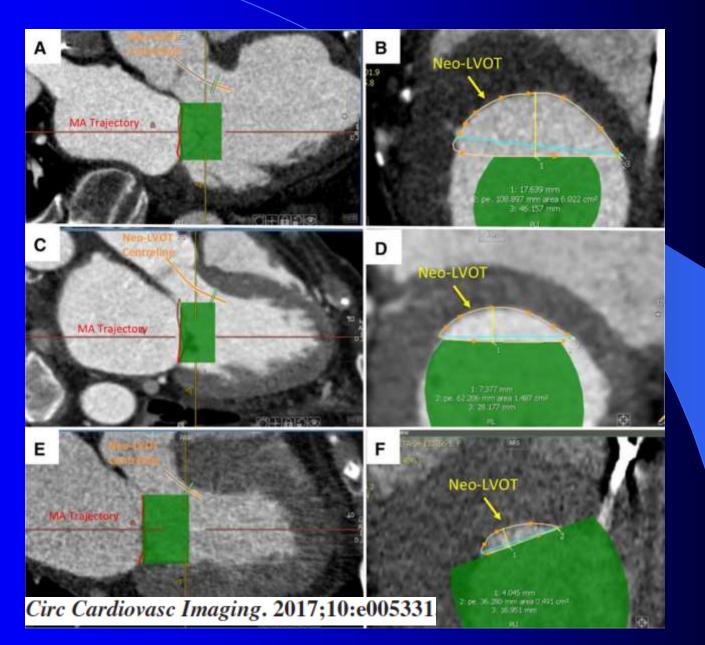

LV size (short and long axis) **Annulus**

size (area, perimeter) a-p, c-c or t-t distance calcification

> **<u>Papillary</u>** distance to annulus p-p distance

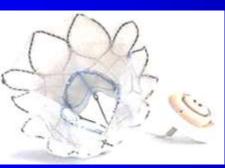

TA approach apico-mitral distance implanting angle

Aorto-mitral Angle



Circ Cardiovasc Imaging. 2017;10:e005331

Sizing of Mitral Annulus


Neo-LVOT

Transcatheter Mitral Valves Implanted in Human

Edwards CardiAQ FIH June 12, 2012

Abbott Tendyne FIH February 2013


Neovasc Tiara FIH January 2014

Edwards Fortis FIH March 2014

Medtronic Intrepid FIM September 2014

NaviGate FIM October 2015

HighLife FIH 2016

Caisson FIM 2016

Worldwide Clinical Experience in TMVR (reported)

Characteristics of patients

TABLE 3 TMVR System Preliminary Clinical, Procedural, and Follow-Up Features

	CardiAQ-Edwards (N = 13)	Intrepid TMVR (N = 27)	Fortis* (N = 13)	Neovasc Tiara (N = 19)	Tendyne† (N = 30)	Caisson (N = 5)	HighLife (N = 6)
Baseline characteristics							
Age, yrs	NA	74 (58-90)	71 ± 8	73 (39-89)	75.9 (55-91)	77.4 (70-91)	69 (57-79)
Female	2/13 (15.4)	9/27 (33.3)	3/13 (23.1)	6/19 (31.6)	5/30 (16.7)	3/5 (60.0)	2/6 (33.3)
STS PROM score	NA	6.2 (1.0-23.3)	7.2 ± 3.6	10.7 (2.09-47.7)	7.3 (2.0-16.0)	8.8 (5-10)	3.3 (2.5-4.9)
NYHA functional class ≥III	NA	23/27 (85.3)	13/13 (100)	19/19 (100)	16/30 (53)	5/5 (100)	6/6 (100)
LVEF, %	40 (20-72)	NA	34	34 (15-65)	47.1 ± 9.2	42.6 (28-58)	33.7 (20-50)
<30%	NA	5/27 (18.5)	NA	5/19 (26)	3/29 (10.3)	1/5 (20.0)	1/6 (16.7)
30%-49%	NA	14/27 (51.8)	NA	13/19 (68)	14/29 (48.3)	2/5 (40.0)	4/6 (66.7)
≥50%	NA	8/27 (29.6)	NA	1/19 (5)	12/29 (41.4)	2/5 (40.0)	1/6 (16.7)
Ischemic/functional MR	9/13 (69.2)	21/27 (77.8)	12/13 (92.3)	12/19 (63.2)	23/30 (76.7)	3/5 (60.0)	3/6 (50.0)

J Am Coll Cardiol 2017;69:2175-92)

Early Clinical Outcomes

TABLE 3 TMVR System Preliminary Clinical, Procedural, and Follow-Up Features

	CardiAQ-Edwards	Intrepid TMVR	Fortis*	Neovasc Tiara	Tendyne†	Caisson	HighLife
	(N = 13)	(N = 27)	(N = 13)	(N = 19)	(N = 30)	(N = 5)	(N = 6)
Procedural and 30-day data							
Technical success	12/13 (92.3)	24/26 (92.3)‡	10/13 (76.9)	16/19 (84.2)	28/30 (93.3)	4/5 (80.0)	5/6 (83.3)
Valve dislocation/embolization	NA	NA	2/15 (15.4)	3/19 (15.8)	0/30 (0.0)	0/5 (0.0)	0/5 (0.0)
Conversion to open-heart surgery	NA	NA	2/15 (15.4)	3/19 (15.8)	0/30 (0.0)	0/5 (0.0)	1/6 (16.7)
Post-procedural ≥ moderate MR	NA	0/26 (0.0)	0/9 (0.0)	NA	1/30 (3.3)	0/4 (0.0)	0/6 (0.0)
LVOT obstruction	NA	0/26 (0.0)	0/9 (0.0)	0/19 (0.0)	1/30 (3.3)	0/4 (0.0)	0/6 (0.0)
Procedural mortality	2/13 (15.4)	4/27 (14.8)	4/13 (30.8)5	0/19 (0.0)	0/30 (0.0)	0/5 (0.0)	1/6 (16.7)
30-day moderate or severe MR	NA	NA	NA	NA	0/26 (0.0)	0/3 (0.0)	0/4 (0.0)
All-cause 30-day mortality	7/13 (53.8)	6/25 (24.0)	5/13 (38.5)	3/19 (15.8)	1/30 (3.3)	1/4 (25.0)	2/6 (33.3)
Follow-up							
Follow-up, months	NA	8.1 (0-20.7)	6 (1-15)	NA	NA¶	3.4 (3-4)	4.1 (3-6)
MR ≥ moderate	NA	0/24 (0.0)	0/8 (0.0)	0/14 (0.0)	0/5 (0.0)	0/4 (0.0)	0/4 (0.0)
NYHA functional class ≥III	NA	2/18 (11.1)	2/8 (25.0)	NA	NA	0/3 (0.0)	0/4 (0.0)
Mortality	7/13 (53.8)	7/27 (25.9)	6/13 (46.2)	3/19 (15.8)	0/5 (0.0)	1/4 (25.0)	2/6 (33.3)

J Am Coll Cardiol 2017;69:2175-92)

Combined Experience

N=115 TA approach 94% Technical success 88.4% Procedural mortality 8.8% 30-day mortality 23.2%

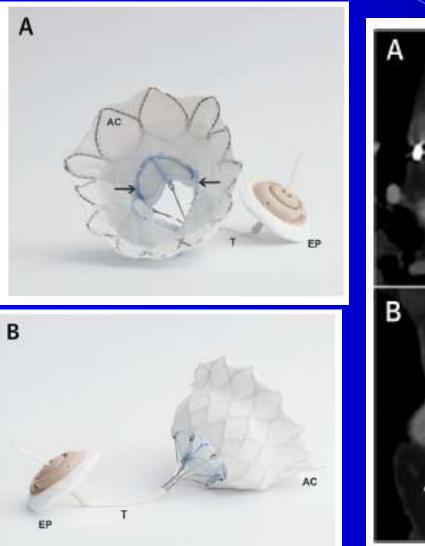
J Am Coll Cardio	2017;69:2	175-92
------------------	-----------	--------

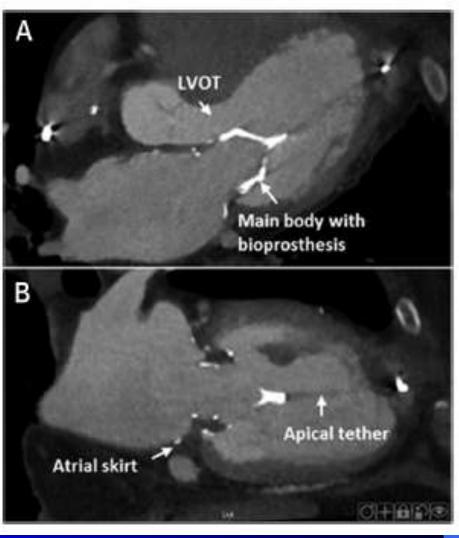
TABLE 5 Early Clinical Experience With Severe MR (N = 115)*	TMVR in Native
Patient characteristics	
Age, yrs	73.8 (39-91)
Female	30/115 (26.1)
STS score	7.5 (1.0-47.7)
NYHA functional class ≥III	83/101 (82.2)
Ischemic/functional MR	85/114 (74.6)
LVEF <50%	65/86 (75.6)
Valve type and approach	
Devices	
Tendyne	30/115 (26.1)
Intrepid	27/115 (23.5)
Neovasc Tiara	19/115 (16.2)
CardiAQ-Edwards	13/115 (11.3)
FORTIST	13/115 (11.3)
HighLife	6/115 (5.2)
Caisson	5/115 (4.3)
MValve	1/115 (1.0)
NCS NaviGate	1/115 (1.0)
Transfemoral approach	7/115 (6.1)
Procedural and 30-day outcomes	
Technical success	100/113 (88.4)
Procedural mortality	10/114 (8.8)
LVOT obstruction	1/96 (1.0)
Post-procedural ≥ moderate MR	1/77 (1.3)
30-day mortality	26/112 (23.2)

Transcatheter Mitral Valve Replacement for Patients With Symptomatic Mitral Regurgitation

A Global Feasibility Trial

David W.M. Muller, MBBS, MD,^a Robert Saeid Farivar, MD,^b Paul Jansz, MBBS, PHD,^a Richard Bae, MD,^b Darren Walters, MBBS, MPHIL,^c Andrew Clarke, MBBS,^c Paul A. Grayburn, MD,^d Robert C. Stoler, MD,^d Gry Dahle, MD,^e Kjell A. Rein, MD,^e Marty Shaw, MBBS,^a Gregory M. Scalia, MBBS,^c Mayra Guerrero, MD,^f Paul Pearson, MD,^f Samir Kapadia, MD,^g Marc Gillinov, MD,^g Augusto Pichard, MD,^h Paul Corso, MD,^h Jeffrey Popma, MD,ⁱ Michael Chuang, MD,ⁱ Philipp Blanke, MD,^j Jonathon Leipsic, MD,^j Paul Sorajja, MD,^b on behalf of the Tendyne Global Feasibility Trial Investigators


ABSTRACT


BACKGROUND Symptomatic mitral regurgitation (MR) is associated with high morbidity and mortality that can be ameliorated by surgical valve repair or replacement. Despite this, many patients with MR do not undergo surgery. Transcatheter mitral valve replacement (TMVR) may be an option for selected patients with severe MR.

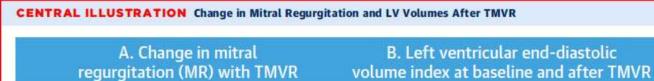
OBJECTIVES This study aimed to examine the effectiveness and safety of TMVR in a cohort of patients with native valve MR who were at high risk for cardiac surgery.

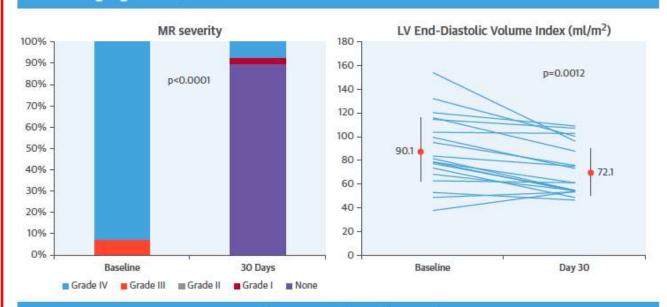
METHODS Patients underwent transcatheter, transapical delivery of a self-expanding mitral valve prosthesis and were examined in a prospective registry for short-term and 30-day outcomes. JAm Coll Cardiol 2017;69:381-91

Tendyne Mitral Valve

Baseline Characteristics

46.7 (14/30) 53.3 (16/30)
0.0 (0/30)
6.5 ± 5.0 (27)
7.3 ± 5.7 (30)
50.0 (15/30)
46.7 (14/30)
26.7 (8/30)
27.2 ± 5.8
53.3 (16/30)
6.7 (2/30)
56.7 (17/30)
33.3 (10/30)
56.7 (17/30)
36.7 (11/30)
16.7 (5/30)
83.3 (25/30)
No. 2 Contra
75.6 ± 9.2


TABLE 2 Baseline Echocardiography Parameters


Mitral valve pathology	
Primary	10.0 (3/30)
Secondary	76.7 (23/30)
Mixed	13.3 (4/30)
Severity of mitral regurgitation	
None/trivial	0.0 (0/29)
1+	0.0 (0/29)
2+	0.0 (0/29)
3+	6.9 (2/29)
4+	93.1 (27/29)
Mitral mean gradient, mm Hg	2.8 ± 1.5 (24)
LV dimensions	
LV end-diastolic diameter, cm	6.1 ± 0.5 (28)
LV end-systolic diameter, cm	$\textbf{4.9}\pm\textbf{0.6}\text{ (28)}$
LV end-diastolic volume index, ml/m ²	90.1 ± 28.2 (24)
LV end-systolic volume index, ml/m ²	48.4 ± 19.7 (24)
LVEF	47.1 ± 9.2 (29)
<30%	10.3 (3/29)
30%-50%	48.3 (14/29)
>50%	41.4 (12/29)

N=30 patients

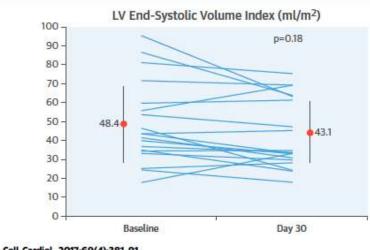

30-day Outcomes

TABLE 3 30-Day Clinical Outcomes	
Death	
Cardiovascular	0.0 (0/30)
Noncardiovascular	3.3 (1/30)
Stroke	
Disabling	0.0 (0/30)
Nondisabling	0.0 (0/30)
Myocardial infarction	0.0 (0/30)
Bleeding (BARC classification)	
Type 2	6.7 (2/30)
Type 3	0.0 (0/30)
Type 4	3.3 (1/30)
Type 5	0.0 (0/30)
Acute renal insufficiency	
Not requiring dialysis	13.3 (4/30)
Requiring dialysis	3.3 (1/30)
Sepsis	
Cardiac	0.0 (0/30)
Noncardiac	10.0 (3/30)
Arrhythmia	
New-onset atrial fibrillation	3.3 (1/30)
New LBBB	10.0 (3/30)
Ventricular arrhythmia	0.0 (0/30)
Prosthesis dysfunction	
Thrombosis	3.3 (1/30)
Embolism or migration	0.0 (0/30)
Hemolysis	3.3 (1/30)
Mitral valve surgery	0.0 (0/30)
Rehospitalization for heart failure	13.8 (4/29)

C. Left ventricular end-systolic volume index at baseline and after TMVR

Muller, D.W.M. et al. J Am Coll Cardiol. 2017;69(4):381-91.

30-day Echo

TABLE 4 Echocardiographic and Functional Outcomes at Day 30 in Survivors With Valve In Situ		
Mitral regurgitation severity		
None	96.2 (25/26)	
1+	3.8 (1/26)	
2+	0.0 (0/26)	
3+	0.0 (0/26)	
4+	0.0 (0/26)	
Mitral valve gradient, mm Hg	3.4 ± 1.7 (25)	
LVOT gradient, mm Hg	1.9 ± 0.7 (24)	

Conclusion

TMVR is an effective and safe therapy for selected patients with symptomatic native MR. Further evaluation of TMVR using prostheses specifically designed for the mitral valve is warranted. This intervention may help address an unmet need in patients at high risk for surgery

Ongoing Clinical Studies

Device Manufacturer	Study	Study Design	Estimated Enrollment	Primary Outcome Measures
CardiAQ-Edwards	Early feasibility study (NCT02718001)	Prospective registry	28 patients	Safety assessed by freedom from device or procedure-related adverse events at 30 days
CardiAQ-Edwards	RELIEF trial (NCT02722551)	Prospective registry	200 patients	Freedom from major adverse cardiac and cerebrovascular events at 30 days per MVARC definition. Freedom from individual adverse events at 30 days
Neovasc Tiara	TIARA-I (NCT02276547)	Prospective registry EFS trial	30 patients	Freedom from all-cause mortality and major adverse events, defined as disabling stroke, myocardial infarction, renal failure requiring dialysis, life-threatening bleeding, and cardiac surgical or transcatheter reintervention at 30 days
Tendyne	Early feasibility study of the Tendyne Mitral valve system (NCT02321514)	Prospective registry EFS trial	110 patients	Safety assessed by freedom from device or procedure related adverse events at 30 days Performance assessed by freedom from device malfunction at 30 days
Intrepid	Twelve Transcatheter Mitral Valve Replacement Pilot Study* (NCT02428010)	Prospective registry EFS trial	10 patients	Adverse events associated with the delivery and/or implantation of the device at 30 days
Caisson	PRELUDE (NCTO2768402)	Prospective registry EFS trial	20 patients	Freedom from major adverse events including death, stroke, myocardial infarction, and surgical reintervention through 30 days
MValve	DOCK 1 (NCT02719912)	Prospective registry EFS trial	30 patients	Composite serious adverse cardiac events and stroke at 30 days

Targeting different disease and etiology	LVOT obstruction
Delivery (transapical, transseptal)	Valve thrombosis
Anchoring (instability, migration, embolization)	Valve performance
Sealing (PVL)	Durability
Stent fatigue/fracture	

- TMVR is still in the very early phase of the development.
- Multiple TMVR systems have being evaluated in a very small number of highly selected patients.
- Feasibility of TMVR has been demonstrated. But the success rate is low with relatively high mortality and complications.
- Safety and efficacy needs to be further evaluated.
- At this point, TMVR should be considered only in patients with symptomatic severe MR and very high-risk or prohibitive surgical risk.

