Part I: PCI Controversies

With GHOST-EU Registry, Bioresorbable Scaffold (BRS) – For Simple Lesion Only?

Corrado Tamburino, MD, PhD Ferrarotto Hospital, University of Catania, Catania Italy

Potential conflicts of interest

Speaker's name: Corrado Tamburino

✓ I have the following potential conflicts of interest to report:

Research contracts
 ✓ Consulting Medtronic, Abbott v, Edwards, Boston Sc.
 Employment in industry
 Stockholder of a healthcare company
 Owner of a healthcare company
 Other(s)

I do not have any potential conflict of interest

BRS: Predicated Benefits Vascular restoration therapy (VRT)

 Superior conformability and flexibility

 "Liberation of vessel from a metallic cage"

 Absence of any residual foreign material

- Restoration of functional endothelial coverage
- Plaque sealing

Additional technical benefits

Improved distribution of the tissue biomechanics and preserved vessel geometry

Restoration of physiological vasomotion, adaptive shear stress, late luminal gain, and late expansive remodelling

Resolution of malapposition and stent fracture; Reduced inflammation and neoatherosclerosis

Reduced neoatherosclerosis Passivation of vulnerable plaques

No 'jailing' of the side branches; No overhang at ostial lesions; No inability to graft the stented segment; Reduced distal embolization

Expected clinical implications of BRS biological effects

1. Reduction of angina

1. Prevention of late thrombotic events

Challenges of BRS

 Deliverability and crossing profile

Radial strength versus crossing profile (thick struts: challenging use in complex lesions and higher thrombogenicity

malapposition, underexpansion) and potential

- Stretchability and strut fracture
- Side branch occlusion

Periprocedural myocardial infarctions? Issues with accessibility of side branches

Limitations of expansion (risk of

for breaks with over-dilatation.

studies are warranted

 Duration of antiplatelet therapy

Use in ACS and complex lesions

Safety and efficacy data in complex lesions not widely available

Concerns over early discontinuation, further

Weighting BRS biological effects vs. clinical performance of BRS

- 1. Based on biological effects of BRS, potentially, all CAD spectrum would benefit from VRT.
- 2. Complex lesions (AMI, long-lesions, diffuse or small vessel disease, bifurcations), in which mechanisms underlying late thrombotic events are more pronounced, would benefit the most from VRT with BRS.
- BRS have specific mechanical properties impacting on feasibility, safety and efficacy, especially in more complex PCI.

Absorb BVS versus Other BRS

Ferrarotto Hospital University of Catania

•cvPipeline and company presentations

ABSORB experience current status

- According to the IFU, ABSORB is indicated for "de novo native coronary artery lesions". The treated lesion length should be less than the nominal scaffolding length (12 mm,18 mm, 28 mm) with reference vessel diameters ≥ 2.0 mm and ≤ 3.8 mm".
- Current ABSORB experience: moving from simple to complex lesions

GHOST-EU: Participating centers

GHOST-EU Extended Use* 1.189 patients

*Compared to ABSORB II eligibility (Diletti et al. Am Heart J. 2012;164:654-63)

Ferrarotto Hospital University of Catania

Capodanno D et at. EuroIntervention 2015;10:1144-53.

ACC/AHA Lesion Complexity

ACC/AHA B2/C N= 687/1,343 (51.2%)*

ACC/AHA type C (N=370)
ACC/AHA type B2 (N=317)
ACC/AHA type B1 (N=360)
ACC/AHA type A (N=296)

*Vs. 40% in the ABSORB EXTEND Whitbourn et al. – TCT 2013

6-Month Outcomes^{*} 1189 patients 6-month follow-up available in 76% 20.0% 15.0% 10.0% 4.9% 4.4% 4.0% 5.0% 2.7% 2.5% 2.1% 2.0% 1.3% 1.0% 0.0% TLF** **ARC ST** All-Cause Target-**Clinically-**TVF CV Death Any MI **Clinically**driven TLR driven TVR defin/prob Death vessel MI

*Event rates are expressed as Kaplan Meier estimates ** Device-Oriented composite primiry endpoint

Ferrarotto Hospital University of Catania

Capodanno D et at. EuroIntervention 2015;10:1144-53.

*Event rates are expressed as Kaplan Meier estimates ** Device-Oriented composite primary endpoint

GHOST-EU Scaffold Thrombosis : 1189 patients

Capodanno D et at. EuroIntervention 2015;10:1144-53.

Prevalence of clinical and angiographic factors among 25 patients with scaffold thrombosis

Scaffold Thrombosis GHOST-EU: 1189 patients

- There were 20 cases of angiographically confirmed ST and three of probable ST.
- 70% occurred in the first month after PCI, at a median of 5 days, suggesting the need for scrupulous lesion selection and PCI techniques when using BVS.
- Intravascular imaging was performed in only 4 of 23 patients who experienced ST, of whom 2 discontinued DAPT.
- 18 of 23 were on clopidogrel.
- 20 of 23 patients were on DAPT at the time of ST.

GHOST-EU Procedural Details :1189 patients

Lesion-based		100% ¬	
Pre-Dilatation	1,405/1,440 (98%)	90% -	
Post-Dilatation	712/1,1440 (49%)	0.00/	
Patient-based		80% -	
No. Target Lesion/Pt	1 2+0 5	70% -	
NO. Target Lesion/Ft	1.2±0.5	60% -	
Multivessel Disease	485/1,186 (40.9%)		
SYNTAX Score	11.3±7.9 (820)	50% -	99.7%
Hybrid (BVS plus non-BVS)	219/1,189 (18.4%)	40% -	
IVUS-guided	171/1,184 (14.4%)	30% -	
OCT-guided	163/1,184 (13.8%)	20% -	
Tot. Scaffold Length (mm)	32.6±23.0 (1,189)	10% -	
Aver. Scaffold Diameter (mm)	3.0±0.5 (1,189)	0%	
Tot. Scaffold Implanted (n)	1731		Technical Success*

No information on predilatation strategy

* Residual in-scaffold diameter stenosis < 30%

Capodanno D et at. EuroIntervention 2015;10:1144-53.

Ferrarotto Hospital University of Catania

Clinical Outcomes

Number at risk

289	262	240	221	207	200	170

MACE includes all-cause death, MI and TVR

Number at risk							
	289	268	246	230	217	211	181

Clinical Outcomes

TLF includes cardiac death, target vessel MI and clinically driven TLR

Clinical Outcomes

Prasugrel or ticagrelor was used in 55 (19.0%) patients.

GHOST-EU : 8/23 ST were in bifurcations

Kaplan-Meier 30-day and 6-mo ST in bifurcations: 1.5% and 3.1%, respectively

Medina classes in 8 bifurcations ST

ACS = acute coronary syndromes; PD = main branch post-dilatation; IG = intravascular guidance; DAPT = on dual antiplatelet therapy

DAPT

No

Yes

Yes

Yes

Yes

No

Yes

Yes

Ferrarotto Hospital University of Catania

Scaffold Thrombosis GHOST-EU: 1189 patients

Ferrarotto Hospital University of Catania

GHOST-EU Investigators, Unplished

GHOST Ferrarotto Population

Patients enrolled N=319; lesions N = 406 From 1/3/2013 to 30/06/2014

6-months FU in 305 patients (95.6%)

 1-year FU in 281 patients: 88.1% of overall population and 95% of those eligible (n=296)

GHOST Ferrarotto Population Clinical characteristics

Variable	Patient-based (N = 319)
Age, years±SD	60.7 ± 9.6
Male	272 (85.3%)
Diabetes mellitus	79 (24.8%)
On insulin	32 (10.0%)
Dyslipidemia	187 (58.6%)
Hypertension	221 (69.3%)
Smoker	117 (36.7%)
Previous PCI	102 (32.0%)
Prior CABG	10 (3.1%)
ACS	158 (49.5%)
NSTEMI	46 (14.4%)
STEMI	58 (18.2%)

GHOST Ferrarotto Population Lesions and procedural characteristics

Lesions B2/C: 51.2% Bifurcations: 16.7% CTO: 8.4%

*per patient

Lesions (N = 406)
21.2 ± 16.8
55 (13.5%)
2.9 ± 0.5
32.8 ± 21.6
3.1 ± 0.4
1.9 ± 1.2*
289 (71.2%)
16.6±4.3
13.5±3.4
132 (32.5%)
80 (25.1)*
37 (11.6)*

GHOST Ferrarotto Population 1-year outcomes

TLF (cardiac death, target-vessel MI, or clinically-driven TLR)	5.2%
TVF (cardiac death, target-vessel MI, or clinically-driven TVR)	5.6%
All Death	1.7%
Non-Cardiac Death	1.0%
Cardiac Death	0.3%
Any MI (all target vessel)	1.3%
TVR	5.3%
TLR	4.9%

Event rates are expressed as Kaplan Meier estimates.

GHOST Ferrarotto Population 1-year scaffold thrombosis

GHOST | Ferrarotto Population Lesions characteristics

Variable	Absorb II inclusion Patient N = 89 Lesions N = 110	Absorb II exclusion Patient N = 230 Lesions N = 296	P values
Lesion type A B1 B2 C	20.0% 41.8% 17.3% 20.9%	11.8% 32.1% 22.6% 33.4%	0.01
Bifurcation	10.9%*	18.9%	0.07
сто		11.5%	
Lesion Length	16.4 ± 7.9	22.9 ± 18.7	<0.0001
Lesion length >34 mm	5.5%	16.6%	0.006
Reference vessel diameter (mm)	2.9 ± 0.5	2.9 ± 0.5	0.32

*side branch <2 mm

GHOST Ferrarotto Population Procedural characteristics

Variable	Absorb II inclusion Patient N = 89 Lesions N = 110	Absorb II exclusion Patient N = 230 Lesions N = 296	P values
Total scaffold length (mm)	25.8 ± 11.5	35.3 ± 23.8	<0.001
Average scaffold diameter (mm)	3.1 ± 0.4	3.2 ± 0.4	0.11
Avarage of scaffolds implanted (n)	1.5 ± 0.7 *	2.0 ± 1.3*	<0.001
Post-dilatation	59.1%	75.7%	0.002
Overlapping	21.5%	36.5%	0.005
Optical coherence tomography use	9.0%*	31.3%*	<0.001
Intravascular ultrasound use	11.2%*	11.7%*	1.00

*per patient

GHOST Ferrarotto Population 1-year TLF

ABSORB Data Scaffold Thrombosis (Longest Available FU)

(1) ABSORB FIRST: All Comers (@AsiaPCR2015)
 (2) GHOST-EU: All Comers (@JIM2015)
 (3) Dr. Costopoulos on CCI: All Comers (in CCI2014)
 (4) CTO (Dr. Serra): CTO (on Eurointervention2014)
 (5) ABSORB EXPAND: All Comers (@EuroPCR2014)

(6) POLAR ACS: ACS (@ EuroPC2014)

(7) ASSURE: All Comers (on Eurointervention2014)

(8) ABSORB EXTEND: selected (@ EuroPCR2014)

(9) ABSORB Cohort B: simple (@ EuroPCR2014)

(10) ABSORB Cohort A: simple @ EuroPCR2011)

(11) GABI-R: All Comers (@Germand congress2014)

- (12) ABSORB II: selected (in Lancet 2014)
- (13) AMC Registry: AC (in Eurointervention 2014)
- (14) Polish BVS registry: all comers (@NFIC2014)

Ferrarotto Hospital University of Catania

Spirit III: Gada H et al. J Am Coll Cardiol Intv 2013;6:1263–6 c/o Patrick Serruys

Left coronary angiography

Right coronary angiography

PCI on CDX: pre-dilatation

Pre-dilatation was performed using 2.75 s.c balloon and 3.0 N.C. balloon

PCI on CDx after pre-dilatation

PCI on CDX: BVS implantation

PCI was performed with implantation of 4 BVS : distal to proximal were 2.5x28 mm, 3.0x28 mm, 3.5x28 mm and 3.5x12 mm. Post-dilatation was performed using 3.0/30 N.C balloon

PCI on CDX: after BVS implantation

Presence of distal edge dissection treated with DES 2.5/18 mm

PCI on CDx: final result

PCI on LAD: pre-dilatation

Pre-dilatation was performed using 2.75-2.25/25 mm conic balloon and 3.0/30 mm s.c. balloon

PCI on LAD after pre-dilatation

PCI on LAD: cutting balloon

Multiple dilatations with cutting balloon 2.5/15 mm

PCI on LAD: after cutting balloon

PCI on LAD: BVS implantation

BRS 2.5/28 - 2.5/28 - 3.0/28 at high pressure

After BVS, angiogram showed luminal irregularities suggestive of intramural hematoma

PCI on LM

Pre-dilatation with s.c. balloon 3.5/12 mm

DES 4.0/12 mm

PCI on LM: result

Angiogram showed contrast extravascular effusion suggestive of coronary perforation

OCT after 4 BVS impantation 2.5-3.0-3.5

DES on LAD

OCT showed that perforation was due to huge dissection, so we decided to use a normal DES (and not a covered stent) in order to close the «dissection tunnel».

OCT after DES implantation

Conclusions

- Complex lesions can benefit the most from BRS.
- The GHOST-EU 1-year results showed good efficacy results.
- In the GHOST-EU there was an increase in 6-month ST, suggesting the impact of lesion selection and suboptimal implantation technique.
- The key message from the GHOST-EU is that an optimal implantation technique is of importance for BRS safety, especially when treating complex lesions.
- There are "complex" and "complex" lesions. It is important to define who is the best candidate for BRS and who should not be treated with BRS. Severely calcified lesions could not be godd candidate for BRS
- More data are needed to better define the safety of BRS on complex settings treated with standardized technique.

