3rd TAVI Summit Seoul, August 9/10, 2013

Durability of the EW Sapien Valve and the MDT Core Valve

Eberhard Grube MD, FACC, FSCAI

University Hospital, Dept of Medicine II, Bonn, Germany Hospital Alemão Oswaldo Cruz, São Paulo, Brazil Stanford University, Palo Alto, California, USA

Eberhard Grube MD

Within the past 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

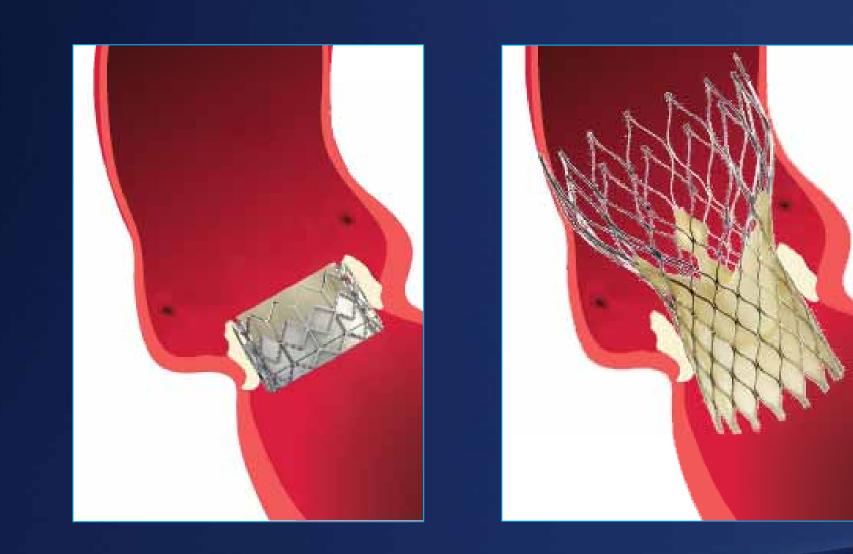
Physician Name

Eberhard Grube, MD

Company/Relationship

Medtronic, CoreValve: C, SB, AB, OF Sadra Medical: E, C, SB, AB Direct Flow: C, SB, AB Mitralign: AB, SB, E Boston Scientific: C, SB, AB Biosensors: E, SB, C, AB Cordis: AB Abbott Vascular: AB Capella: SB, C, AB Valtech: E, SB, Claret: SB Keystone Medical: SB

TAVI Arrives


Current Generation Devices

>80,000 patients treated thru 2013 in >650 interventional centers around the globe!

Edwards Lifesciences

Medtronic CoreValve

Anatomic "Footprint" of Edwards Sapien Valve vs. MDT CoreValve

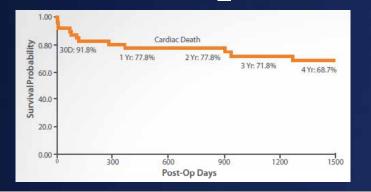
It is not just the "Foot Print" that differentiates Transcatheter Heart Valves

Support structure	Leaflets	Sealing skirt
Nitinol	Bovine pericardium	Porcine pericardium
Stainless steel	Porcine pericardium	Polyester
Cobalt chromium	Porcine aortic valve	Braided polyester
Dacron	± anti-calcification treatment	Polyurethane
		Polyethylene terephalate (PET)

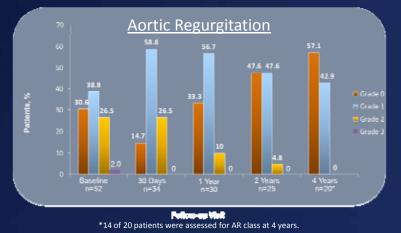
Courtesy of N. Piazza TVT 2013

Valve Durability: A Lesson from Surgical Valves

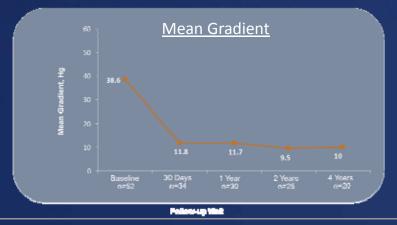
- Long-term survival of bioprosthetic tissue valves requires the minimization of tissue stress and leaflet calcification
 - Leaflet bending/folding during valve operation induces high stresses on leaflets. High bending stresses on leaflets can lead to bending fatigue and potentially delamination, calcification, and/or valve failure¹
 - Misalignment, leaflet prolapse, asynchrony, poor coaptation, high commissure stress, pinwheeling/bending may lead to early failure.
 - Moderate to severe aortic valve calcification has been identified as an independent predictor of long-term outcomes with impact on both valvular and ventricular function as well as need for reoperation.²



1. Schoen 1987


2. Rosenhek R, Binder T, Porenta G, et al. Predictors of outcome in severe, asymptomatic aortic stenosis. *N Engl J Med.* 2000;343:611-17.

The Medtronic CoreValve[®] System's Durability is demonstrated with Four Year Results.¹


4-year Kaplan-Meier Cardiac Death Survival: 68.0 <u>+</u> 7.6%²

100% patients Grade 0 or Grade 1 AR

Mean Gradient: 10 mmHg

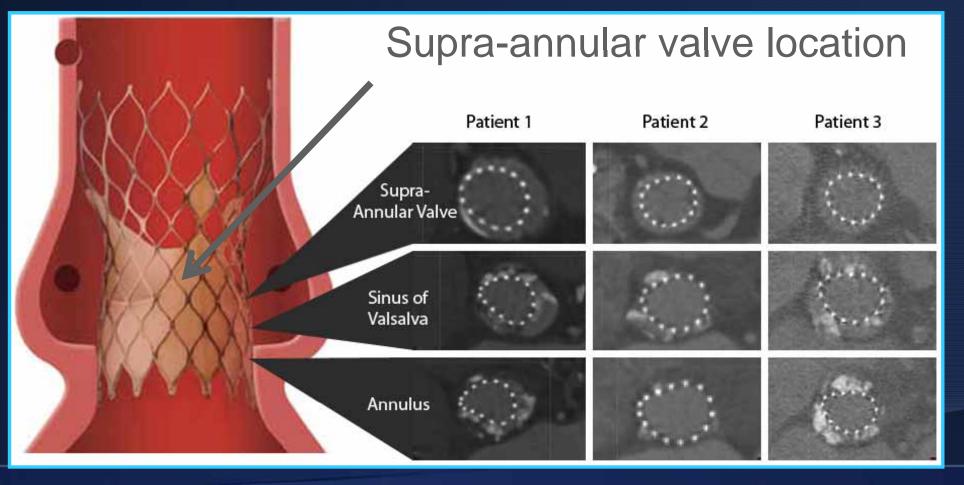
83% patients NYHA Class I or II

No frame fractures, valve migrations, valve endocarditis, or structural valve deterioration reported at four-years.

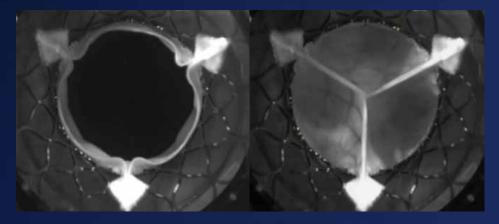
CoreValve[®] Percutaneous Aortic Valve

Outflow Orientation

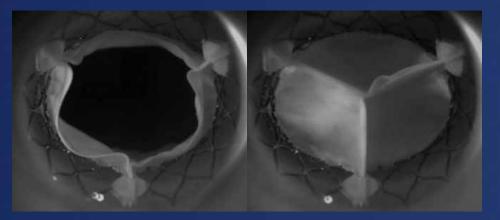
Constrained Portion Valve Function


> Inflow Portion Sealing

- 1. Sits in ascending aorta
- 2. Orientation during deployment
- 1. Supra-annular leaflet function
- 2. Designed to avoid coronaries
- 1. Intra-annular anchoring
- 2. Mitigates paravalvular aortic regurgitation


Supra-Annular Valve Design Can Mitigate Impact of Elliptical or Undersized Deployment

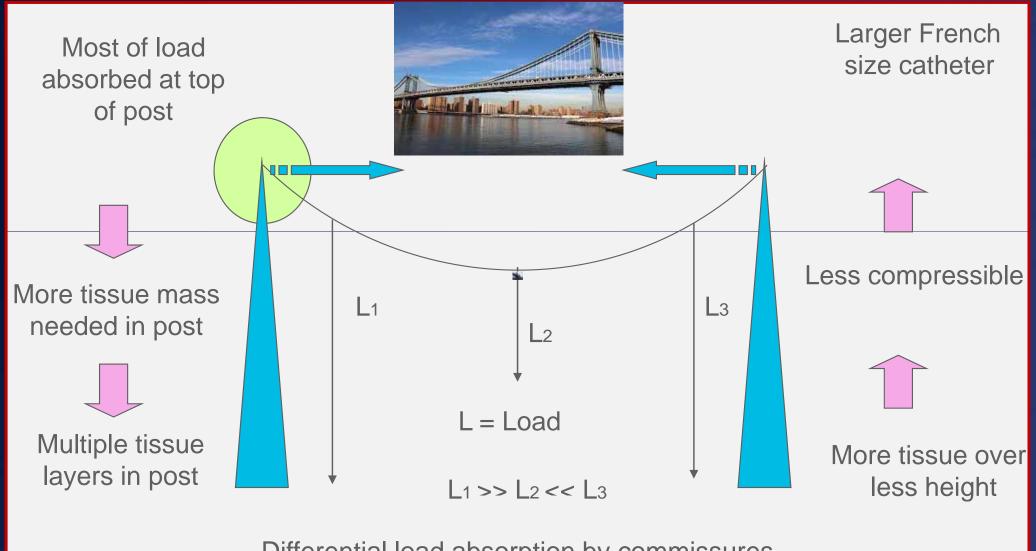
- Flexible frame conforms to native annulus shape while maintaining bioprosthesis in a higher position
- Decoupling of valve from native annulus minimizes ellipticity at the valve level



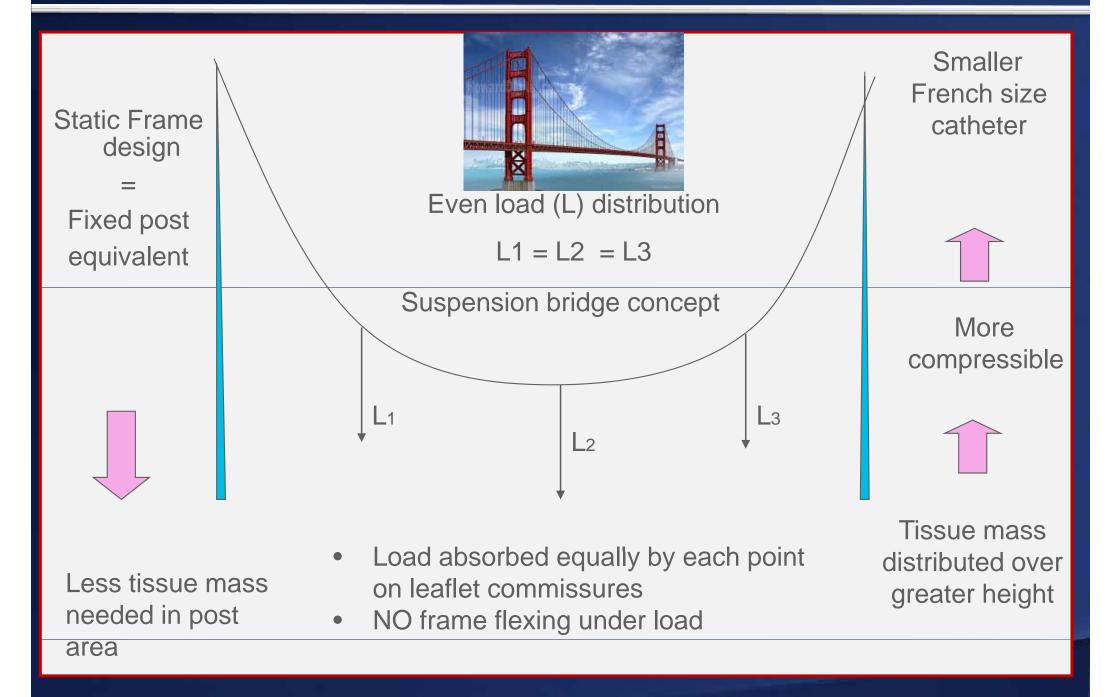
Minimizing Valve Ellipticity Helps Maintain Proper Leaflet Coaptation

 Minimizing value ellipticity minimizes leaflet prolapsing, buckling, and pinwheeling frequently observed in elliptical value deployments

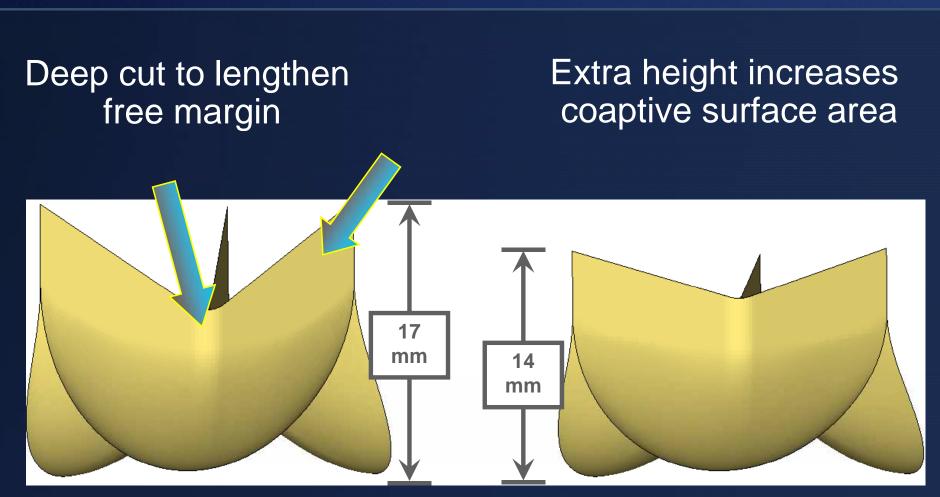
Circular Deployment



Elliptical Deployment (22mm x 30 mm)



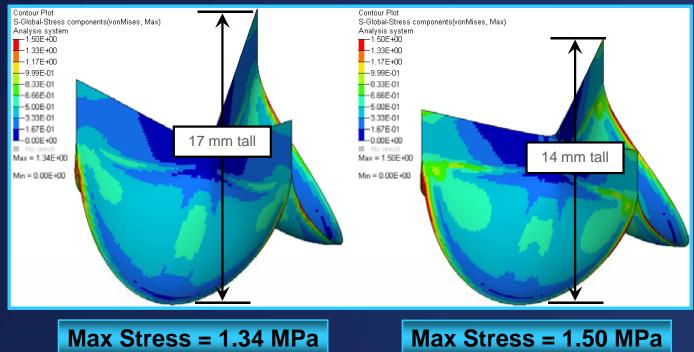
Surgical Bioprosthesis Designs



Differential load absorption by commissures

CoreValve Bioprosthesis Design

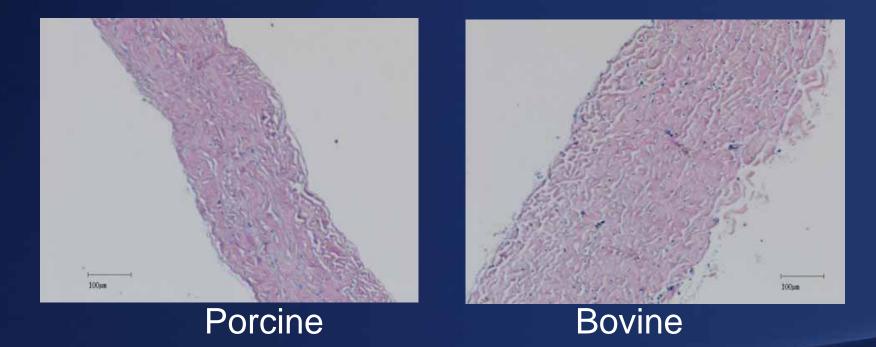
CoreValve Leaflet Geometry Incorporates Design Features to Reduce Stresses



CoreValve Leaflet Design

Traditional Leaflet Design

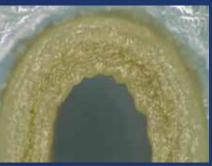
Commissure height and deep leaflet cuts minimize leaflet stress


- Finite element analysis of the CoreValve[®] leaflets demonstrate a 12% reduction in stress when compared to traditional valve designs
- Areas of high stress can induce collagen degeneration that over time could lead to tearing and valve failure¹
- Valve designs that reduce leaflet stresses "are likely to have improved performance in long-term applications"²

- 1. Schoen Frederick J. Cardiac Valve Prostheses: Pathological and Bioengineering Considerations. J Cardiac Surg. 1987;2:65-108.
- 2. Sun W., Li K., Sirois E. Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment. *J Biomech*. 2010;43:3085-3090.

Porcine Pericardium Thickness is Well Suited for Transcatheter Valve Delivery

- Thin tissue enables minimized delivery catheter size
- Porcine pericardium thickness is about half that of bovine despite being very structurally similar^{1,2}
- Both composed of randomly oriented collagen bundles


- 1. Sacks MS. Uniaxial mechanical and structural properties of bovine versus porcine pericardial tissue. Medtronic Engineered Tissue Mechanics Laboratory. University of Pittsburgh, Pittsburgh, PA. January 17, 2008 Data on File.
- 2. Braga-Vilela AS, Pimentel ER, Marangoni S, Toyama MH, de Campos Vidal B. Extracellular matrix of porcine pericardium: Biochemistry and collagen architecture. J Membr Biol. 2008 Jan; 221(1):15-25

Porcine pericardium is the optimal tissue for valve performance and low-profile delivery

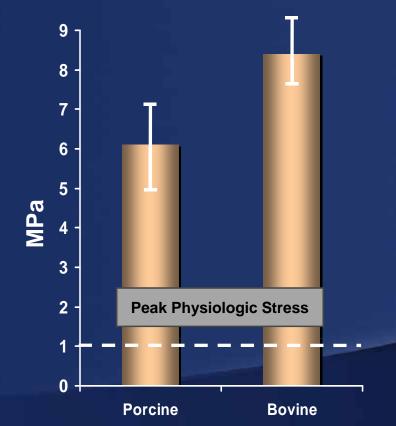
Thin

Porcine pericardium thickness is about half that of bovine. Thinner tissue prevents tissue damage during crimping, tracking, and deployment, allowing for low-profile delivery across all valve sizes.^{1,2}

Porcine Pericardium

um Bovine Pericardium Magnification 175X

Strong

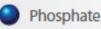

The ultimate tensile strength (UTS) and suture pull out stresses for porcine and bovine pericardium are statistically equivalent^{1,3} and peak physiologic stresses are significantly less than both UTS values⁴

1. Sacks MS. Uniaxial mechanical and structural properties of bovine versus porcine pericardial tissue. Medtronic Engineered Tissue Mechanics Laboratory. University of Pittsburgh, Pittsburgh, PA. January 17, 2008. Data on File.

2. Braga-Vilela AS, Pimentel ER, Marangoni S, Toyama MH, de Campos Vidal B. Extracellular matrix of porcine pericardium: Biochemistry and collagen architecture. *J Membr Biol.* 2008 Jan;221(1):15-25.

 Garcia Paez JM, Carrera A, Herrero EJ, et al. Influence of the selection of the suture material on the mechanical behavior of a biomaterial to be employed in the construction of implants. Part 2: porcine pericardium. J Biomater Appl. 2001;16:68-90.

4. Li, K and Sun, W. "Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: Implications for percutaneous valves" *Ann Biomed Eng.* 2010 Aug;38(8):2690-701.


AOA[®] anti-mineralization treatment reduces both early and late valvular calcification

- Alpha-amino oleic acid (AOA[®]) treatment inhibits calcium formation on prosthetic valve leaflets.
- Unlike surfactants, AOA bonds with the tissue to block calcium binding.
- AOA has 20 years of proven clinical success on Medtronic's surgical valves.¹

Glutaraldehyde Preserved Tissue

Calcium and phosphate can crystalize within glutaraldehyde preserved tissue and damage tissue collagen

Tissue with AOA*

AOA inhibits calcium-phosphate crystal formation protecting tissue collagen

Glutaraldehyde Preserved Tissue Collagen Fiber

AOA Anti-Mineralization Treatment

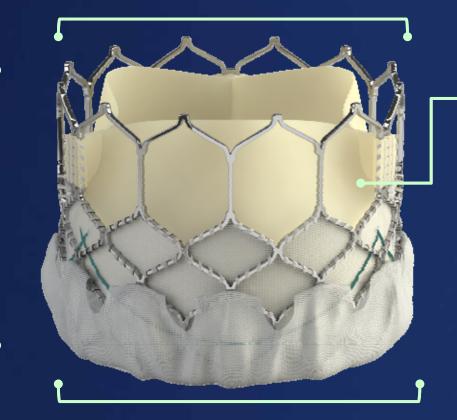
Conclusion (Core Valve)

- Long-term survival of bioprosthetic tissue valves requires the minimization of tissue stress and leaflet calcification
- CoreValve's design and tissue selection are intended to ensure durability and long-term performance.
- The Medtronic CoreValve[®] System's Durability is Demonstrated with with no frame fractures, valve migrations, valve endocarditis, or structural valve deterioration reported at four-years.
- The ADVANCE study demonstrates CoreValve's EOA and mean gradient remain stable over time

Edwards TAVR System: Design, Development and Clinical Results

Four Principles of AVR Remain Unchanged

	Principles	sAVR
	Predictable Procedure	Implantability
	Optimal Hemodynamics	 Circular frame design, optimal leaflet opening
	Low Rate of Complications	 Low thrombogenicity, low PVL, low conduction disturbances, low bleeding
	Durability	 Circular geometry for low leaflet stress Tissue choice Anti-calcification tissue treatment

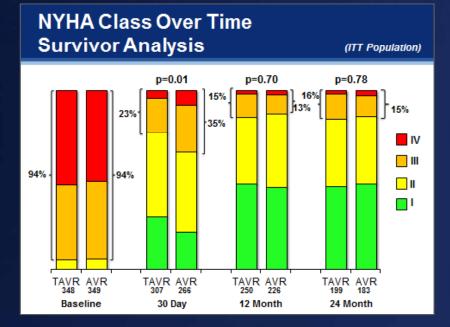

The 4 Principles of Aortic Valve Design apply to future transcatheter Heart Valves

Principles	Edwards SAPIEN 3 THV	Edwards CENTERA System
Predictable procedure	 Balloon-expandable design Fine control of valve positioning and deployment 	 Motorized delivery with touch deployment
Optimal hemodynamics	 Circular expansion at the annulus 	 Contoured frame design for optimal seating
Low rate of complications	 Outer skirt and high radial strength frame minimize PV leak Low frame height 	 Contoured frame design for sealing in the annulus Low frame height
Durability	 Circular expansion at leaflet level Bovine pericardial tissue Anti-calcification treatment and leaflet matching 	 Bovine pericardial tissue Anti-calcification treatment and leaflet matching
	Next-generation, balloon-expandable platform: most closely aligned with optimal AVR principles	Controlled-release nitinol-frame technology: aligns more closely with principles of nitinol valves

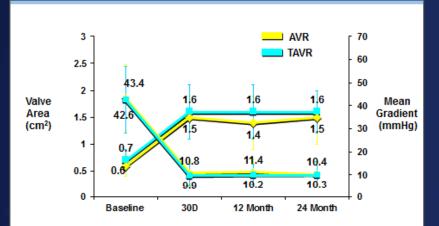
SAPIEN 3: Designed for TAVI as Intended – Low Complications, High Performance

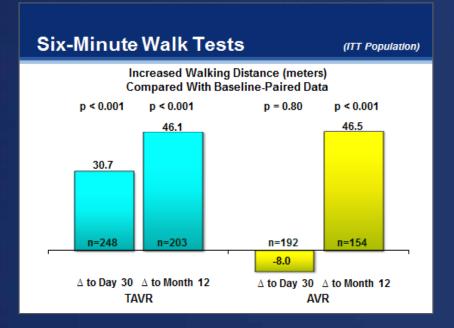
Enhanced frame design

- New frame geometry allows 14F profile
- High radial strength providing circularity for optimal hemodynamics and durability



New outer skirt PV leak solution Bovine pericardial tissue


 Optimized leaflet shape and tissue treatment for durability


Low frame height for low conduction disturbance

Both AVR and TAVR are Highly Effective

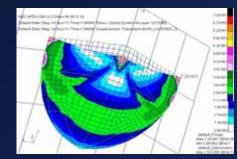
Echocardiography Assessments AV Areas (AT Population)

Primary Endpoint KCCQ Overall Summary

Growth curve analysis; adjusted for baseline MCID = minimum clinically important difference

Transcatheter Valve Program: Grounded in Over 50 Years of Valve Expertise

DESIGN

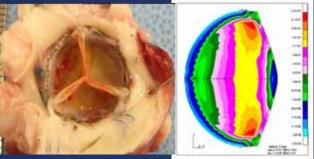


Frame & Leaflet Geometry

Tissue Attachment

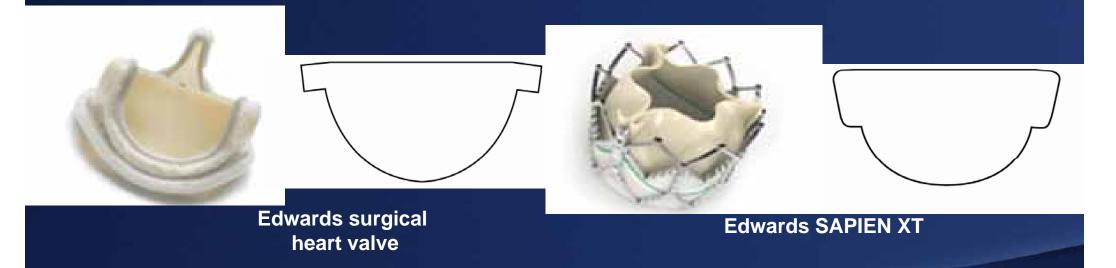
Finite Element Analysis

- Laser Cutting
- Heat Treatment
- Electro Polishing
- Materials selection
- Tissue Treatment
- Hemodynamics
- Fatigue


- Raw Materials
- Calcification
- Fatigue
- Expansion
- Recoil
- Corrosion
- MRI

TESTING

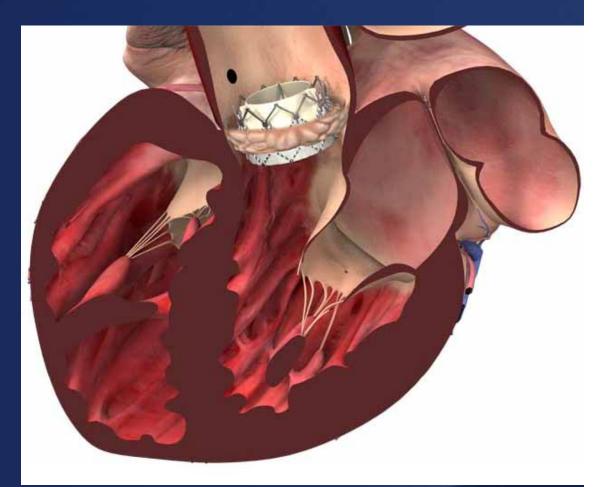
Pulsatile Flow


Animal Models

Leaflet Design Considerations

Leaflet design and manufacturing based on Edwards clinically proven surgical aortic tissue valves

- Proven bovine pericardial tissue
- Proprietary surgically-shaped leaflets
- Leaflet matching process for thickness and elasticity
- ThermaFix anti-calcification technology



Optimized Frame Height

The Edwards SAPIEN XT frame is optimized for proper placement and non-interference with the surrounding anatomy

Valve Size	SAPIEN Valve Height	SAPIEN XT Valve Height
20 mm		14 mm
23 mm	14 mm	14 mm
26 mm	16 mm	17 mm
29 mm		19 mm

Core Principles of Edwards Transcatheter Valve Technology

Reliable Delivery

Balloon expandable for accurate valve placement and deployment

Circular at the Annulus and Leaflet Level

Balloon-expandable to open round plus high radial strength frame design to maintain proper shape for hemodynamics and durability

Low Frame Height

Frame height optimized for proper placement and noninterference with the surrounding anatomy minimizing complications

Durable Leaflet Design

Technologically advanced leaflet design and manufacturing based on Edwards clinically proven aortic tissue valves

Conclusion (Edwards)

- The last 5 years has spawned not only an explosion of global clinical experience with TAVI, but unprecedented clinical science to rapidly advance the field
- Third and future generation platforms designed to broaden
 populations and optimize outcomes

