Double Aortic and Mitral Valve-inValve Implantation Technical tips and tricks

Jian (James) Ye, MD FRCPC
Clinical Professor of Surgery
St. Paul's Hospital, University of British Columbia
AP VALVES 2018, Seoul

Disclosure

Consultant:
Edwards Lifesciences
JC Medical Inc.

Double aortic and mitral valve-in-valve case

Transapical Approach

Aortic VinV
Mitral VinV

Double Aortic and Mitral Valve-in-Valve Implantation

Tips and Tricks

Confirming True Failure of Bioprothesis

- TEE is necessary prior to consideration of VinV:
- Small size of bioprosthesis
- Obese patient
- Moderately elevated pressure gradient with a small aortic valve area
- Rapid progression of stenosis
- Early failure
- Endocarditis?

Understanding unique futures of surgical valves

Unique design of each surgical valve

CE Perimount Magna

Medtronic Hancock II
Hancock in

CE Perimount Magna Ease

Medtronic Mosaic

CE Porcine SAV

Trifecta
(St. Jude Medical)

Edwards Prima Plus

Medtronic Freestyle

St. Jude Toronto SPV

Visibility of valves on fluoroscopy

Magna Ease

Mitroflow

Mosaic

Trifecta

True Internal Diameter

Marked valve size (Magna pericardial tissue valve)

A
B
C
D

Stent diameter (wireform)
Tissue annulus diameter
External sewing ring diameter
Anterior effective profile

Size	25 mm	27 mm	29 mm	31 mm	33 mm
A	25	27	29	31	31
B	28	29.5	31.5	33.5	33.5
C	36	38	40	42	44
D	7	7.5	8	8.5	8.5

Marked valve size (Mosaic tissue valve)

Mosaic Aortic Bioprosthesis Model 305

Valve Size Catalog (Stent O.D.i) (A)								Orifice Diameter (Stent I.D.) (B)	Suture Ring Diameter (C)	Valve Height (D)	Aortic Protrusion (E)
	$(\pm 0.5 \mathrm{~mm})$	$(\pm 0.5 \mathrm{~mm})$	$(\pm 1 \mathrm{~mm})$	$(\pm 0.5 \mathrm{~mm})$	$(\pm 0.5 \mathrm{~mm})$						
$\mathbf{3 0 5 0 1 9 0 1}$	19	17.5	25.0	13.5	11.0						
30502101	21	18.5	27.0	15.0	12.0						
30502301	23	20.5	30.0	16.0	13.5						
30502501	25	22.5	33.0	17.5	15.0						
30502701	27	24.0	36.0	18.5	15.5						
30502901	29	26.0	39.0	20.0	16.0						

Mosaic Mitral Bioprosthesis Model 310
$\left.\begin{array}{|cccccc|}\hline & \begin{array}{c}\text { Valve Size } \\ \text { Catalog } \\ \text { Number }\end{array} & \begin{array}{c}\text { Orifice } \\ \text { (A) O.D.t) }\end{array} & \begin{array}{c}\text { Suture Ring } \\ \text { (Stent I.D.) } \\ \text { (B) }\end{array} & \begin{array}{c}\text { Valve } \\ \text { Diameter } \\ \text { (C) }\end{array} & \begin{array}{c}\text { Ventricular } \\ \text { (D) }\end{array}\end{array} \begin{array}{c}\text { Protrusion } \\ \text { (E) }\end{array}\right]$

[^0]
Is CT measurement of ID reliable?

True Internal Diameter

Mogna Valve Size

Magna: 29

Stent Luternal Diameter
9. True ID

Height

Pericaton More Valve Size

Perimeunt Valve Size
Perimount, 29 :

Pencurbon More, 29

Stent Internal Diameter

Q True ID

Height

Stent Internal Diameter	29
P. True ID	27
Height	19

cesav	Valvesize
CESAV. 29	

Stent Internal Diameter
9. True ID

Herght

Stent Intemal Diamoter
26
\%. Trie ID

Height

Biocor / Epie Valve Size

Brocor Epic: 29

Stent Internal Diametor

9. True ID

Height
24.5

27

19

Valve in Valve Apps

Free to download

Risk factors for coronary obstruction

- Anatomic factors:

Narrow aortic root
Narrow and low STJ
Low coronary ostium

- Unfavorable designs of tissue valves:

High profile of tissue valves
Outside-mounted tissue valve

- Tilted surgical valve
- Technical factors:

Too much oversizing
Selection of PHVs

Aortic Root

VCT to assess risk of coronary obstruction

Design of bioprotheses

Profile

Design of bioprotheses

 Outside vs inside mounted leaflets

Left Main Occlusion Many risk factors in this case

Left Main Obstruction less risk factors

Selecting an appropriate THV in patients with high risk of LM obstruction

Potential Malposition of aortic THV due to mitral tissue valve

Approach in patients with aortic and mitral valve-in-valve

Transapical for both aortic and mitral VinV VS

Transeptal for mitral VinV + Transfemoral for aortic VinV

Determining THV size

- True ID of surgical stented valve
- CT measurement of annulus size of surgical stentless valve
- VCT estimated distance to each coronary ostium
- STJ height and size
- AS vs AI of bioprosthesis, which may influence valve selection
- Neo-LVOT size - mitral valve-in-valve

Small surgical valve is an independent risk factor for reduced long-term survival

TABLE 4 Factors Influencing the Survival of Aortic VinV Patients ($\mathbf{n}=\mathbf{4 2}$)

	Univariate Model		Multivariate Model	
	Hazard Ratio (95\% CI)	p Value	Hazard Ratio (95\% CI)	p Value
Female	2.485 (0.614-10.07)	0.202		
PVD	2.752 (0.747-10.14)	0.128		
PASP $\geq 60 \mathrm{~mm} \mathrm{Hg}$	2.906 (0.692-12.21)	0.145		
LVEF < 50%	1.742 (0.489-6.207)	0.392	2.945 (1.472-25.99)	0.049
CABG \pm CAD	0.184 (0.177-3.475)	0.749		
Creatinine 100-149 mmol/l	0.925 (0.127-6.749)	0.938		
Creatinine $\geq 150 \mathrm{mmol} / \mathrm{l}$	2.126 (0.428-10.57)	0.357		
DM	2.601 (0.639-10.59)	0.182	4.779 (0.741-11.71)	0.125
CVA	0.773 (0.995-6.304)	0.810		
Surgical valve size $<23 \mathrm{~mm}$	3.420 (0.951-12.30)	0.060	6.186 (1.001-22.82)	0.013

Global VinV Registry

FIGURE 6 Rate of High Transvalvular Gradients Following Aortic Valve-in-Valve Procedures

Global VinV Registry

Severe PPM = Effective orifice area $<0.65 \mathrm{~cm} 2 / \mathrm{m} 2$

Dvir D. EuroPCR, May 21, 2015

Select an appropriate THV

- ID > 20mm: most types of THVs are OK
- ID < 20mm: Supra-annularly mounted THVs, such as Evolut \mathbf{R}
- ID < 20mm: Evolut R, S3, or other THV with breaking surgical basal ring

Potential for fracture of basal ring

Table 1: Combined Results of Bioprosthetic Valve Fracture Bench Testing

Fracture of surgical basal ring

Fracture of surgical basal ring

Pre-fracture

Post-fracture

Mitral V-in-V in double aortic and mitral V -in-V

- Usually, no size issue
- Slightly more oversizing
- Ruling out LA thrombosis
- LVOT assessment

Predicting factors for LVOT obstruction

Aortomitral angulation

LV size

Ventricular septum

Profile of surgical valve

TEE to assess LVOT

CT to assess risk of LVOT obstruction

Optimal Position of THV

Positioning Determined by Fluoroscopy or Echocardiography
Surgical Valve

Transcatheter Valve Stent
$2-3 \mathrm{~mm}$

Slightly Oversizing

Outflow side > inflow side or a visible waist

Clinical Experience in double aortic and mitral VinV

- 10 year clinical experience at our center
- CT assessment is essential
- Apical approach is excellent, performing aortic v-in-v first
- Extremely low mortality and morbidity
- Excellent clinical outcomes
- Become a favorable therapy for failed double aortic and mitral tissue valves at our center
- Anticoagulation with ASA + Warfarin

[^0]: Equivalent to annulus diameter

