Coronary Access After TAVI Technical Tips and Tricks

O. Christopher Raffel

Insert Department and Institution Here(20pt)

Prevalence of CAD in the TAVI Patient

Cover

Changing Trends in Age at TAVI

Grover, FL, et al. J Am Coll Cardiol 2017;69:1215–30

Coronary Access After TAVI: Key points

Different from a native AV or a Bioprosthetic AVR

- Large frames that cover the coronary sinus
- Native valve remains between the frame and the coronary sinus
- Less precise than a SAVR depth, coronary ostia & posts Small waist of self-expanding TAV – neoaorta
- Catheter choice is different small curves by 0.5-1.0 Most times the frame extends above coronary ostia
- Catheter frame interaction guide going through frame cell
- Use guidewire as rail intubate and extubate ostia across frame Coaxiality is not always (often is not) possible – **BIGGEST CHALLENGE**
- Free wiring "fly fishing" wiring not uncommon
- More frequent use of wire and balloons to rail road guide
- More liberal use of guide extension devices (Guideliner/Guidezilla)
- Use of different guides to Ikari, MPA

Coronary Access After TAVI

Patient Anatomy

Type of TAV

Implant Depth

- I. Sinotubular junction dimensions
- > 2. Sinus height
 - 3. Leaflet length and bulkiness
- 4. Sinus of Valsalva width
- 5. Coronary height

- 1. Sinotubular junction dimensions
- 2. Sinus height
- > 3. Leaflet length and bulkiness
 - 4. Sinus of Valsalva width
 - 5. Coronary height

- 1. Sinotubular junction dimensions
- 2. Sinus height
- 3. Leaflet length and bulkiness
- 4. Sinus of Valsalva width
- 5. Coronary height

Coronary Ostia Heights

Coronary Access After TAVI ALL TAV'S MAY EXTEND ABOVE CORONARY OSTIA

- Coronary ostia height measurements are from CoreValve US IDE Trial
- · Measurements represent the height from the basal plane to the center of the left coronary ostium
- Yellow box represents the interguartile range (+/- 25%)

Evolut R valve - Size 29

- Annulus Range = 23-26mm
- Depth = 3-5mm

- Sapien [™]*3 Size 26
- Annulus Range = 23.4-26.4 mm
- Depth = 10% of height

Lotus[™]* - Size 25

- Annulus Range = 23-25mm
- Depth = 3.6 mm*

* Gooley et al., JACC Cardiovasc Interv, 201

Device and Procedural

- > 1. Commissural tab orientation
 - 2. Sealing skirt height
 - 3. Valve implant depth

Device and Procedural

- 1. Commissural tab orientation
- >2. Sealing skirt height
 - 3. Valve implant depth

Device and Procedural

- 1. Commissural tab orientation
- 2. Sealing skirt height
- 3. Valve implant depth

CoreValve: Skirt Height

1			23mm Evolut R / PRO	26 mm Evolut R / PRO	29mm Evolut R / PRO	34mm Evolut R
DE		A. Inflow Diameter	23 mm	26 mm	29 mm	34 mm
		B. Waist Diameter	20 mm	22 mm	23 mm	24 mm
		C. Outflow Diameter	34 mm	32 mm	34 mm	38 mm
		D. Frame height	45 mm	45 mm	45 mm	46 mm
		E. Commissure Height	26 mm	26 mm	26 mm	26 mm
		F. Skirt Height	13 mm	13 mm	13 mm	14 mm

APVALVES 2018

Modified from Yudi, et al., J Am Coll Cardiol 2018; 71(12):1360–78

CoreValve: Commissure Height

1			23mm Evolut R / PRO	26 mm Evolut R / PRO	29mm Evolut R / PRO	34mm Evolut R
E	5 B 4 3 2 1	A. Inflow Diameter	23 mm	26 mm	29 mm	34 mm
		B. Waist Diameter	20 mm	22 mm	23 mm	24 mm
		C. Outflow Diameter	34 mm	32 mm	34 mm	38 mm
		D. Frame height	45 mm	45 mm	45 mm	46 mm
		E. Commissure Height	26 mm	26 mm	26 mm	26 mm
		F. Skirt Height	13 mm	13 mm	13 mm	14 mm

AP VALVES 2018

Modified from Yudi, et al., J Am Coll Cardiol 2018; 71(12):1360–78

CoreValve: Waist Diameter – "neo aorta"

1			23mm Evolut R / PRO	26 mm Evolut R / PRO	29mm Evolut R / PRO	34mm Evolut R
		A. Inflow Diameter	23 mm	26 mm	29 mm	34 mm
D		B. Waist Diameter	20 mm	22 mm	23 mm	24 mm
	B	C. Outflow Diameter	34 mm	32 mm	34 mm	38 mm
	3 2 1	D. Frame height	45 mm	45 mm	45 mm	46 mm
		E. Commissure Height	26 mm	26 mm	26 mm	26 mm
		F. Skirt Height	13 mm	13 mm	13 mm	14 mm

AP VALVES 2018

Modified from Yudi, et al., J Am Coll Cardiol 2018; 71(12):1360-78

Waist Diameter

- Narrow "Neo-aorta"
- Smaller curve catheters/guides
- Contralateral backup support

Coronary Access Depending on Implantation Depth

FIGURE 2 Self-Expanding Valve and Coronary Access Depending on Level of Implantation Across the Annulus

Particularly with low-coronary height \leq 10mm implant depth of at least \sim 4mm is important.

B

Coronary Access Depending Position of Commissural Post

APVALVE5 2018

CoreValve vs Portico

Portico: Large cell design

 Large stent cells in the aortic section of the stent, allows access to coronary ostia postimplant

Aortic Section

Annulus Section

Manoharan, G., St. Jude Medical Portico™ Transcatheter Aortic Valve Clinical Experience, EuroPCR, 05/17/2012.

CoreValve: Angio + PC

- Use aortography to confirm ostia takeoff points and positioning of the Evolut R prosthesis by using a pigtail catheter
 - Assess implant height, and anatomical and device specific features.
 - Count 4-5 alternating diamonds on the valve to identify access point above the sealing skirt
 - 2.5 diamonds = top of sealing skirt
 - 5 diamonds = top of commissure point

Zoom 129% /9/11 10:08:32 AM Made In OsinK

Coronary Angiography and PCI after TAVR with CoreValve

 Initial non-selective injection followed by selective
 Facilitated by using J-wire to enter diamond infront/adjacent to ostia (angled stiff glide wire useful too for entering diamond or tracking the catheter)

CoreValve

- 2. Engage the coronary ostium coaxially through the middle of the frame cell:
 - 1. Target the valve frame cell that is co-axial to the coronary ostia
 - 2. Always try and take the catheter tip into the frame cell over the guide wire. <u>ALWAYS</u> remove guide over guide wire.
 - 3. If there is difficulty with the frame cell that is directly coaxial to the ostium, use the frame cell to the left or right or above the ostium
 - 4. May need to "fly-fish" the guidewire and rail guide in.

Coronary PCI after CoreValve TAVI Left Coronary **Right Coronary**

- Use JL3.5/3.0, EBU 3.0. JR4 if ulletsmall neo aorta and sinus.
- Second line guide: Ikari right 1.0 or lkR 1.5
- If difficulty with coronary ulletengagement, rail guide using:
 - Coronary guidewire ±
 - Balloon support ± \bullet
 - Guide extension catheter

- Use JR4 guide
- Second line guide: Ikari Right 1.5, AR (wide sinuses), MP
- If skirt is high, use Ikari Right or MPA guide to enter diamond from above coronary ostia and rail guide towards ostium

Aortogram

Zoorn: 298% Im: 1/157 Series: 10 JPEGLossless:Non-hierarchical-1stOrderPrediction Position: HFS

Image size: 512 x 512

WL: 130 WW: 149

27/8/14, 5:41:45 pm Made In OsiriX

LCA diagnostic with JL 3.5

RCA diagnostic with JR 4

JL 3.5 guide: wire support

mage size: 512 x 512 WL: 130 WA: 150 832921-TPCH(89 y、43 y) Exam Protocol Core New

Zoom: 298% Im: 1/75 Series: 3 JPEGLossless-Non-hierarchical-1stOrderPrediction Position: HFS

1/9/14, 6:14:01 pm Made In OsiriX

LM stenting using "snorkeling technique"

Zoons 298% Int 1760 Select 18 JPEGLossiescharcheranchcat 1stOrderPrediction Postport PS

mote size: \$12 x 512

WL: 130 WW: 142

Zooins 298% Inn 2736 Series: 19 JPEGLoseleas:Nom hierarchical-TatOrderPrediction Position: HES

size: 512 x 512

AL- 180 WW. 1-FIL

Zoom: 298% 1/9/14, 6:47.35 gm km: 1/113 Sarkas: 24 Made In Calif. #PEillostes: Non-Herarchical-1stOrderPrediction Portion: 145

PCH (89 y + 43 y) Image size: 532 x 512 Exam Protocol WL T30 WW: 150

Coro New

1/9/14, 6:50:15 pm Made In OsirX

rotocol

aro New

Image of 2e: 512 x 512 WL 120 WWe 137 832921-TPCH(89 y , 43 y) ^{Image abs: 512 x 512} Exam Protocol Coro-DW 832921-TPCH (89 y , 85 y) Mainteries:None:None:flun2(1-1413)

Final result + IVUS

Image size: 512 x 512 WL: 127 WW: 255

Zoom: 251% Im: 1015/1413 Series: 2 JPE6Baseline 832921-TPCH (89 y , 85 y) Mainseries:None:None:Run2(1-1413)

Zoom: 298% Im: 1/124 Series: 27 JPEGLossless:Non-hierarchical-1stOrderPrediction Position: HFS

1/9/14, 6:55:59 pm Made In OsiriX Zoom: 251% Im: 375/742 Series: 6 JPE6Basetine

1/9/14, 6:46:36 pm Made In Osir0(

Edwards Sapien

APVALVES 2018

© 2016 Medtronic. All Rights Reserved

Yudi, et al., J Am Coll Cardiol 2018; 71(12):1360-78

Coronary PCI after Sapien

Left Coronary

• Standard diagnostic & guide Catheters: JL4, EBU/VL 3.5 or 4

Right Coronary

• Standard cathters: JR4, IM, AR

If Commissural post in front of Ostium

- Use adjacent cell or come from above frame
- Rail guide using: Guide wire/Balloon/Guide Extension

If high implant +/- bulky native leaflets

- Pre-wire and rail guide.
- May need double wire support/semi selective engaged guide for PCI.

LCA diagnostic with JL4

ROTA-PCI of Cx. EBU 3.5 guide

Guide e tension with Guideliner to cross the frame

D

Guide extensions – balloon assisted tracking

Guide extensions – balloon assisted tracking

In Summary

- PCI post TAVI will become more common
- Generally high success rate
- Important to understand the characteristics of the TAVI device and how it is interacting in the specific patient (patient anatomy & deployment characteristics)
- Catheter selection 0.5 size smaller curve for long stent selfexpanding TAV. More liberal use of wire & balloon tracking and guide extension devices.

Coronary Access & PCI After TAVI

Anatomical factors
TAV type
Implant depth

- 1. Sinotubular junction dimensions
- 2. Sinus height
- 3. Leaflet length and bulkiness
- 4. Sinus of Valsalva width
- 5. Coronary height

CoreValve vs Portico

CAD in TAVI: Background

- High prevalence in TAVI population.
- AUC suggests pre-TAVI revascularization appropriate; but not universally practiced.
- Post TAVI coronary intervention uncommon but likely to increase in incidence.
- Provide some challenges unique to TAVI; variable implant height, presence of native valve, self-expanding TAV frame.

Coronary Access After TAVI

Anatomical factors
TAV type
Implant depth

CoreValve: Cell Geometry

Coronary Access

- Cell geometry preserves coronary access
- Will allow 8F guides (10F)
- However, with angulation and space between frame and root guide – frame interaction occurs. Insert & remove over guidewire.

	Kerckhoff- Klinik	Segeberg Registry	UK Registry	TAVR-LM Registry
Incidence	35 / 1,000 (3.5%)	17 / 296 (5.7%)	18 / 2,588 (0.7%)	9 / 6,405 (0.1%)
ACS Indication	11.4%	37.5%	65%	78%
Time to Intervention Post-TAVR	233 ± 158 days	17.7 months (range: 1-72)	136 days (range: 1-1092)	368 days (IQR: 204-534)
Type of TAV Implanted			Not Reported	
CoreValve	29%	100%		44%
SAPIEN XT	54%		1.1	55%
JenaValve	3%		and a	1.1.1 m .
Symetis	11%		× 0.7/	LH S
Portico	3%		at an int	Liff IS
Procedural Success	74%	95.8%	Not Reported	100%

AP VALVES 2018

¹Blumenstein, et al., *Clin Res Cardiol* 2015; 104:632-39; ²Allali, et al., *Cardiovasc Revasc Med* 2016; epub ahead of print; ³Snow, et al., *Int J Cardiol* 2015; 199:253-60; ⁴Chakravarty, et al., *J Am Coll Cardiol* 2016; 67:951-60

- 1. Sinotubular junction dimensions
- 2. Sinus height
 - 3. Leaflet length and bulkiness
 - 4. Sinus of Valsalva width
 - 5. Coronary height

- 1. Sinotubular junction dimensions
- 2. Sinus height
- 3. Leaflet length and bulkiness
- 4. Sinus of Valsalva width
 - 5. Coronary height