

Centre for Heart Valve Innovation St. Paul's Hospital, Vancouver

TMVR for Mitral Annular Calcification Technical considerations

Jian (James) Ye, MD, FRCSC Clinical Professor of Surgery Division of Cardiac Surgery, St. Paul's Hospital University of British Columbia, Canada

AP VALVES, Seoul, August 9-11, 2018

Disclosure

 Consultant Edwards Lifesciences JC Medical Inc.

Mitral Annular Calcification (MAC)

Degree of MAC

Potential Fatal Complications with MV Surgery

- LV perforation
- Coronary injury and Acute posterior myocardial infarction
- Rupture of atrioventricular groove
- LV hematoma/delayed hemorrhage
- Significant paravalvular leak
- High operative mortality

Transcatheter Options

- MitraClip
- TMVR with transcatheter mitral valves
- TMVR with transcatheter aortic valves
- Hybrid approach (surgical implantation of THVs)

TMVR with transcatheter mitral valve

Tendyne valve

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 10, NO. 11, 2017

Case: TMVR with SAPIEN valve

MAC with severe MS and moderate MR.

CT measurement of mitral annulus size: 4.6-5.3 cm²

CT measurement of Neo-LVOT - 3.1 cm²

TEE 3D measurement of mitral annulus size - ~4.0 cm²

TMVR with SAPIEN valve Balloon sizing – 25mm balloon

TMVR with SAPIEN valve Implanting a 26mm SAPIEN 3 valve

Post-implantation

Post-implantation

Valve in MAC

TMVR in MAC Global Registry

104 patients from 47 centers in 11 countries (Sept 2012-April 2016) Underwent TMVR with compassionate use of aortic THV

Guerrero EuroPCR 2016

Transcatheter Mitral Valve Replacement in Native Mitral Valve Disease With Severe Mitral Annular Calcification

Results From the First Multicenter Global Registry

J Am Coll Cardiol Intv 2016;9:1361-71

Between 2012 - 201532 Centers 64 Patients Mean age 73 ± 13 years STS score $14.4 \pm 9.5\%$

 SAPIEN
 7.8%

 SAPIEN XT
 59.4%

 SAPIEN 3
 28.1%

 Inovare (Brazil)
 4.7%

30-day Outcomes

30-day echo	
Mean MVG (n = 21)	5.9 ± 2.1
MVA (n = 11)	$\textbf{2.3}\pm\textbf{0.8}$
MR	
None to trace	18/22 (81.8)
Mild 2(+)	4/22 (18.2)
≥3(+)	0/22 (0)
LVOT gradient (n = 12)	15 ± 17.8
30-day NYHA functional class	
I.	7/25 (28)
H	14/25 (56)
Ш.	4/25 (16)

TABLE 3 Clinical Outcomes	
Length of stay, days	17.7 ± 18
30-day/procedural death*	19/64 (29.7)
Cardiovascular	8/64 (12.5)
LVOTO	2/64 (3.1)
LV perforation	2/64 (3.1)
Complete AV block	1/64 (1.56)
MI (air emboli due to pulmonary vein perforation)	1/64 (1.56)
Stroke	2/64 (3.1)
Noncardiac	11/64 (17.2)
Multiorgan failure	5/64 (7.8)
Pneumonia	3/64 (4.6)
Thoracentesis related bleeding complication	1/64 (1.56)
Infection	2/64 (3.1)
In-hospital complications	
Stroke	4/58 (6.9)
Myocardial Infarction	1/64 (1.6)
Mitral valve reintervention after index procedure	1/64 (1.6)
Major bleeding	14/46 (30.4)
Vascular complication	5/58 (8.6)
New HD requirement	6/58 (10.3)
New permanent pacemaker requirement	8/58 (13.8)
Endocarditis	2/58 (3.5)
Hemolytic anemia	1/58 (1.7)
Valve thrombosis	0/64 (0)

TMVR for MAC Challenges and complications

- Valve sizing
- Amount of calcification for anchoring
- Optimal oversizing
- Selection of THV
- Predicting factors for LVOT obstruction, paravalvular leak, PHV deformity and rupture of atrioventricular groove

Summary

- TMVR for MAC is feasible, but associated with high mortality and morbidity.
- Pre-procedural anatomic assessment (CT and TEE) and team discussion is critical.
- Transcatheter intervention can only be considered in very high-risk or non-operable patients.

Centre for Heart Valve Innovation St. Paul's Hospital, Vancouver