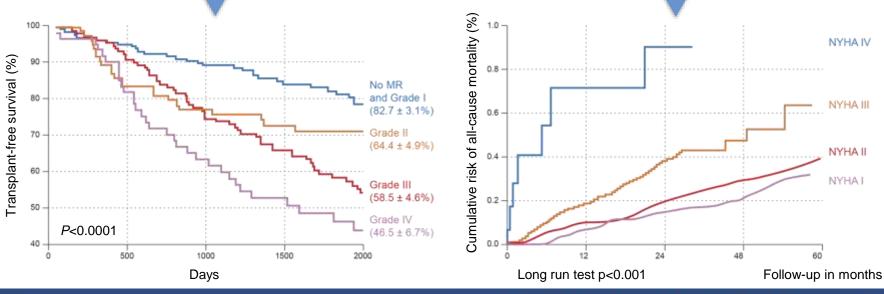
# Mitraclip Procedure: A-to-Z Lifehack

09-August 2018


## Anna Sonia Petronio

Chief of S.D. Laboratorio di Emodinamica Cardiothoracic and Vascular Department University of Pisa



# As mitral regurgitation becomes more severe morbidity and mortality risk increases

Event – free survival decreases with increasing MR severity **Risk of mortality increases** with increasing NYHA class



Kaplan-Meier plots for cumulative probability of all-cause mortality

Bursi F, Barbieri A, Grigioni F, et al. Prognostic implications of functional mitral regurgitation according to the severity of the underlying chronic heart failure: a long-term outcome study. Eur J Heart Fail. 2010;12(4):382-388.

Ahmed A et al. - Higher NYHA Classes and increased mortality and hospitalisation in HF patients with preserved LV function - Am Heart J. 2006 151: 444–50



# Surgery in MR

- In expert centres, in patients with primary MR, the repair rate is >90% and 90% of patients are alive and free of reoperation after 10-15 years.
- Surgery for secondary MR remains a challenge. Operative mortality after mitral valve surgery for FMR is not negligible ranging from 8.8 to 21%.
- FMR is the consequence and not the cause of an LV dysfunction.

Di Salvo T, et al. Mitral valve Surgery in advanced heart failure, JAAC 2010



## 2017 ESC/EACTS Guidelines for the management of valvular heart disease

# Primary mitral regurgitation

## inoperable patients →

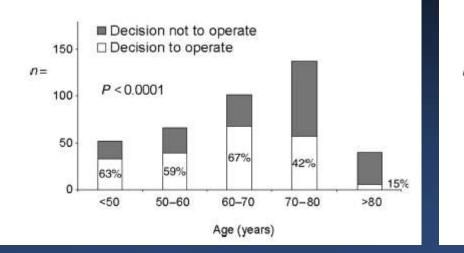
Indications for intervention in severe primary mitral regurgitation

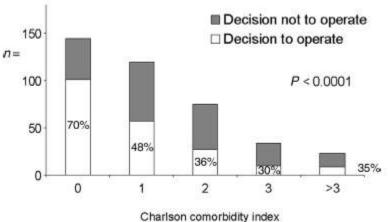
| Recommendations                                                                                                                                                                                                                                                                         | Class <sup>a</sup> | Level <sup>b</sup> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| Mitral valve repair should be the preferred technique when the results are expected to be durable.                                                                                                                                                                                      | I,                 | с                  |
| Surgery is indicated in symptomatic patients with LVEF >30%. $^{121,131,132}$                                                                                                                                                                                                           | T                  | 8                  |
| Surgery is indicated in asymptomatic patients with LV dysfunction (LVESD $\geq$ 45 mm <sup>c</sup> and/or LVEF $\leq$ 60%). <sup>122,131</sup>                                                                                                                                          | 1                  | B                  |
| Mitral valve repair should be considered in<br>symptomatic patients with severe LV dysfunc-<br>tion (LVEF <30% and/or LVESD >55 mm)<br>refractory to medical therapy when the likeli-<br>hood of successful repair is high and comorbid-<br>ity low.                                    | lla                | c                  |
| Mitral valve replacement may be considered in<br>symptomatic patients with severe LV dysfunc-<br>tion (LVEF <30% and/or LVESD >55 mm)<br>refractory to medical therapy when the likeli-<br>hood of successful repair is low and comorbid-<br>ity low.                                   | Шь                 | с                  |
| Percutaneous edge-to-edge procedure may be<br>considered in patients with symptomatic<br>severe primary mitral regurgitation who fulfil<br>the echocardiographic criteria of eligibility and<br>are judged inoperable or at high surgical risk by<br>the Heart Team, avoiding futility. | Шь                 | c                  |

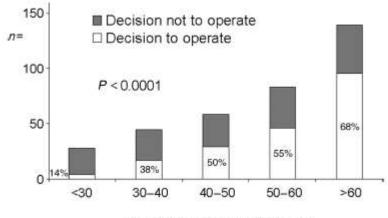


2017 ESC/EACTS Guidelines for the management of valvular heart disease

# Secondary mitral regurgitation


## Surgical risk > low $\rightarrow$


## EF<30% →


Indications for mitral valve intervention in chronic secondary mitral regurgitation<sup>a</sup>

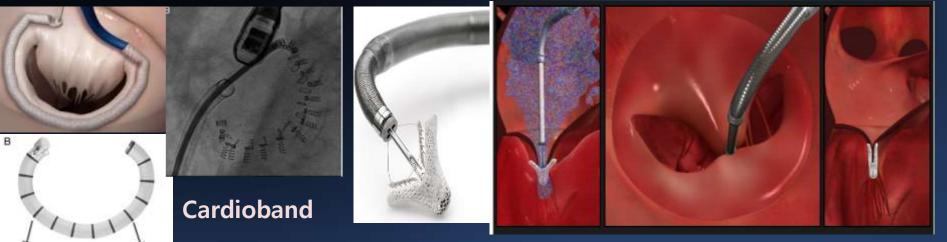
| Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                               | Class <sup>b</sup> | Level <sup>c</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| Surgery is indicated in patients with severe<br>secondary mitral regurgitation undergoing<br>CABG and LVEF >30%.                                                                                                                                                                                                                                                                                                                                              | I                  | с                  |
| Surgery should be considered in sympto-<br>matic patients with severe secondary mitral<br>regurgitation, LVEF <30% but with an<br>option for revascularization and evidence of<br>myocardial viability.                                                                                                                                                                                                                                                       | lla                | C                  |
| When revascularization is not indicated,<br>surgery may be considered in patients with<br>severe secondary mitral regurgitation and<br>LVEF >30% who remain symptomatic<br>despite optimal medical management<br>(including CRT if indicated) and have a low<br>surgical risk.                                                                                                                                                                                | ІЬ                 | c                  |
| When revascularization is not indicated and<br>surgical risk is not low, a percutaneous<br>edge-to-edge procedure may be considered<br>in patients with severe secondary mitral<br>regurgitation and LVEF >30% who remain<br>symptomatic despite optimal medical man-<br>agement (including CRT if indicated) and<br>who have a suitable valve morphology by<br>echocardiography, avoiding futility.                                                          | ІЬ                 | c                  |
| In patients with severe secondary mitral<br>regurgitation and LVEF <30% who remain<br>symptomatic despite optimal medical<br>management (including CRT if indicated)<br>and who have no option for revasculariza-<br>tion, the Heart Team may consider a percu-<br>taneous edge-to-edge procedure or valve<br>surgery after careful evaluation for a ventric-<br>ular assist device or heart transplant accord-<br>ing to individual patient characteristics. | нь                 | с                  |

# What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery?

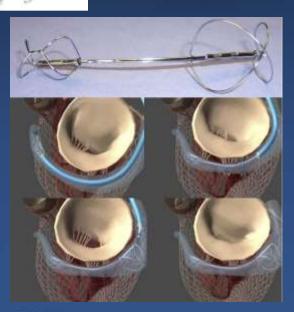






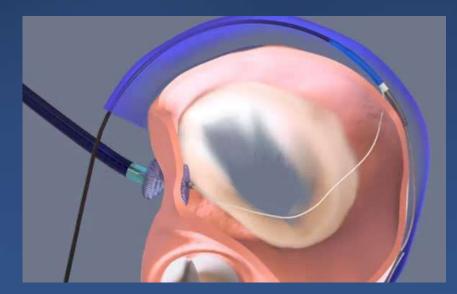

#### Mirabel M, et al., European Heart J 200




#### AP VALVES 2018

Left ventricular ejection fraction (%)

## Percutaneous mitral valve repair devices




### MitraClip



**AP VALVES 2018** 

Carillon



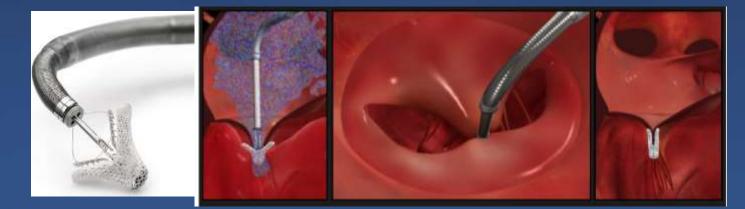
### Arto System



Mitral valve repair in advanced heart failure: Transcatheter repair

## The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


APRIL 14, 2011

VOL. 364 NO. 15

#### Percutaneous Repair or Surgery for Mitral Regurgitation

Ted Feldman, M.D., Elyse Foster, M.D., Donald D., Glower, M.D., Saibal Kar, M.D., Michael J. Rinaldi, M.D., Peter S. Fail, M.D., Richard W. Smalling, M.D., Ph.D., Robert Siegel, M.D., Geoffrey A. Rose, M.D., Eric Engeron, M.D., Catalin Loghin, M.D., Alfredo Trento, M.D., Eric R. Skipper, M.D., Tornmy Fudge, M.D., George V. Letsou, M.D., Joseph M. Massaro, Ph.D., and Laura Mauri, M.D., for the EVEREST II Investigators<sup>4</sup>

In patients who remain symptomatic despite GDMT and CRT, transcatheter mitral valve repair has been shown to improve symptoms





### Randomized Comparison of Percutaneous () Repair and Surgery for Mitral Regurgitation

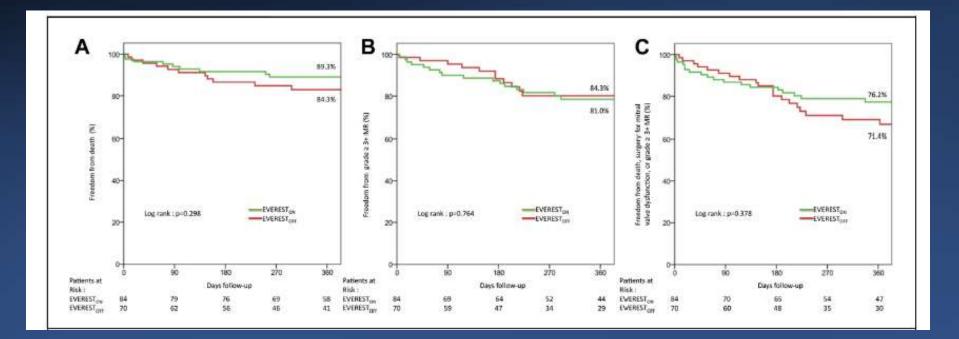
5-Year Results of EVEREST II

| Subgroup         | Percutaneous<br>Repair | Surgery      | Difference (95% CI)       | p value |        |           |              |                        |             |                  | Interaction<br>p value |
|------------------|------------------------|--------------|---------------------------|---------|--------|-----------|--------------|------------------------|-------------|------------------|------------------------|
| Sex              |                        |              |                           |         |        |           |              | 1                      |             |                  | 0.89                   |
| Male             | 42.9 (42/98)           | 63.9 (23/36) | -21.0% (-39.5% to -2.5%)  | 0.03    |        | _         |              | _                      |             |                  |                        |
| Female           | 46.4 (26/56)           | 65.0 (13/20) | -18.6% (-43.2% to 6.1%)   | 0.15    |        |           |              |                        |             |                  |                        |
| \ge              |                        |              |                           |         |        |           |              |                        |             |                  | 0.005                  |
| Age ≥70 yrs      | 45.1 (32/71)           | 42.3 (11/26) | 2.8% (-19.5% to 25.0%)    | 0.81    |        |           |              |                        |             |                  |                        |
| Age <70 yrs      | 43.4 (36/83)           | 83.3 (25/30) | -40.0% (-57.0% to -22.9%) | < 0.001 | -      |           |              |                        |             |                  |                        |
| ype of MR        |                        |              |                           | 1       |        |           |              |                        |             |                  | 0.02                   |
| Functional MR    | 40.5 (17/42)           | 28.6 (4/14)  | 11.9% (-16.0% to 39.8%)   | 0.43    |        |           |              | _ <b>.</b>             |             |                  |                        |
| Degenerative MR  | 45.5 (51/112)          | 76.2 (32/42) | -30.7% (-46.5% to -14.8%) | < 0.001 |        | _         |              |                        |             |                  |                        |
| VEF              |                        |              |                           |         |        |           |              |                        |             |                  | 0.04                   |
| LVEF <60%        | 44.1 (26/59)           | 41.2 (7/17)  | 2.9% (-23.7% to 29.5%)    | 0.83    |        |           |              |                        | -           |                  |                        |
| LVEF $\geq 60\%$ | 44.1 (41/93)           | 74.4 (29/39) | -30.3% (-47.3% to -13.3%) | 0.001   |        |           |              |                        |             |                  |                        |
|                  |                        |              |                           |         | 60     | -40       | -20<br>Diffe | 0 20<br>rence [95% CI] | 40          | 60               |                        |
|                  |                        |              |                           |         | Surger | ry better |              |                        | ercutaneous | repair<br>better |                        |



# **Anatomical EVEREST criteria**

#### Inclusion criteria


#### Exclusion criteria

mal-coaptation of the A2 and P2 scallops of the MV. In case of a secondary jet, it must be considered clinically insignificant. MV orifice area < 4 cm<sup>2</sup> Leaflet flail: Width of flail segment ≥15 mm Flail gap ≥10 mm Leaflet tethering: Coaptation depth >11 mm Vertical coaptation length ≤2 mm Severe calcification: Annular calcification Calcification of the grasping area of A2 or P2 scallop Presence of a significant cleft of A2 or P2 scallops Bileaflet flail or severe prolapse Lack of both primary and secondary chordal support Presence of atrial septal defect or patent PFO with clinical symptoms

The primary regurgitant jet originates from

To date, the EVEREST criteria have been acknowledged as the baseline of an anatomical selection process. However, it is important to clarify that those criteria were arbitrarily assigned the limited anatomical EVEREST criteria have constantly been expanded......

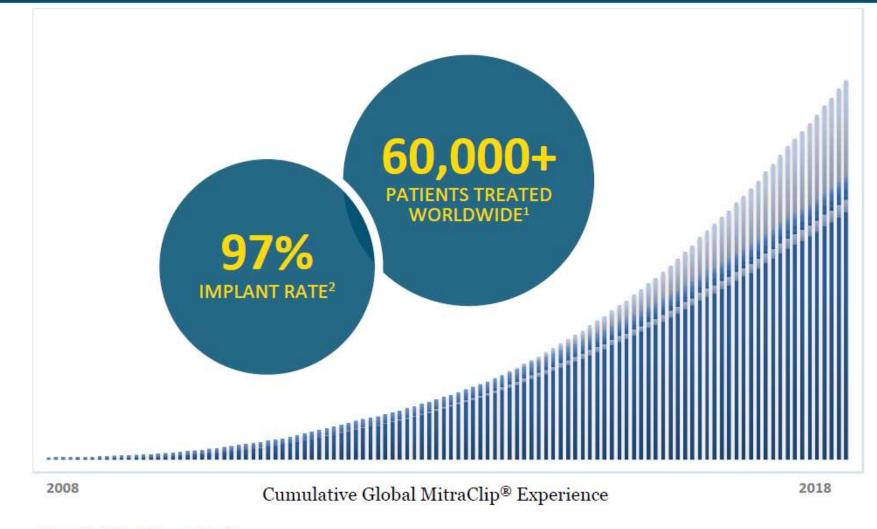
Extended Use of Percutaneous Edge-to-Edge Mitral Valve Repair Beyond EVEREST (Endovascular Valve Edge-to-Edge Repair) Criteria



JAAC Cardiov. Intervention, Attizzani, 2014






# The German Consensus by the Working Group of Interventional Cardiology

### Morphology for a Mitraclip therapy

| Optimal valve morphology                                    | Conditionally suitable valve morphology                                                                  | Unsuitable valve morphology                                                                                     |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Central pathology in<br>Segment 2                           | Pathology in Segment 1 oder 3                                                                            | Perforated mitral valve leaflet or cleft                                                                        |
| No leaflet calcification                                    | Mild calcification outside of the grip-zone of the clip<br>system; ring calcification, post annuloplasty | Severe calcification in the grip-zone                                                                           |
| Mitral valve opening area<br>>4 cm <sup>2</sup>             | Mitral valve opening area >3 cm <sup>2</sup> with good residual mobility                                 | Haemodynamically significant mitral stenosis (valve opening area $<3 \text{ cm}^2$ , MPG $\ge 5 \text{ mmHg}$ ) |
| Mobile length of the posterior leaflet $\geq 10 \text{ mm}$ | Mobile length of the posterior leaflet 7-<10 mm                                                          | Mobile length of the posterior leaflet <7 mm                                                                    |
| Coaption depth <11 mm                                       | Coaption depth $\geq 11 \text{ mm}$                                                                      |                                                                                                                 |
| Normal leaflet strength and mobility                        | Leaflet restriction in systole (Carpentier IIIB)                                                         | Rheumatic leaflet thickening and restriction in systole<br>and diastole(Carpentier IIIA)                        |
| Flail-width <15 mmFlail-<br>Gap <10 mm                      | Flail-width >15 mm only with a large ring width and the option for multiple clips                        | Barlow's syndrome with multisegment flail leaflets                                                              |

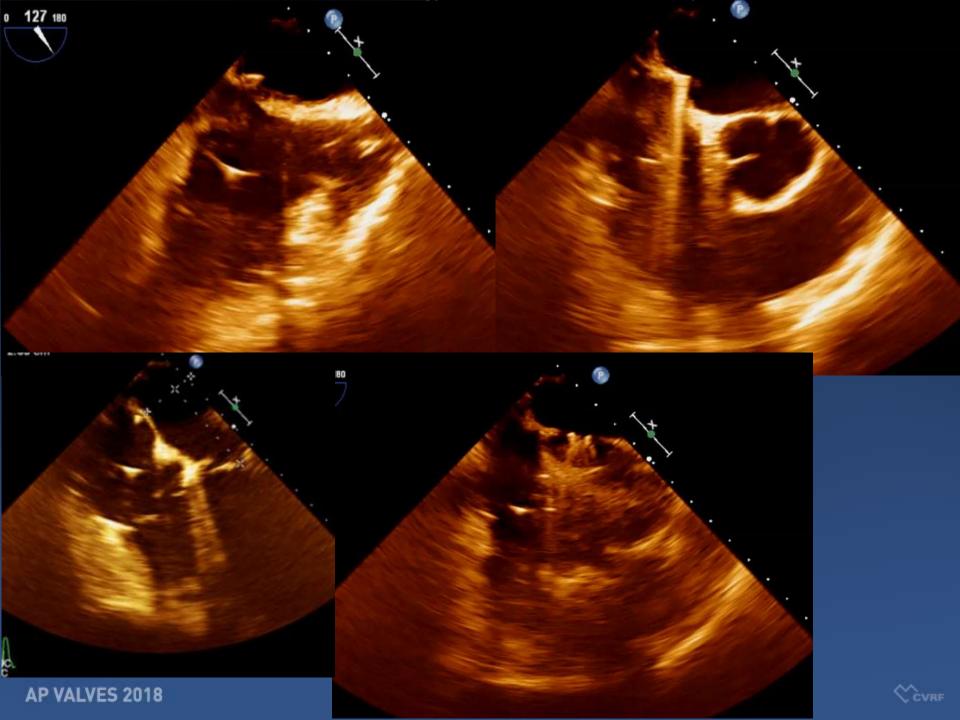


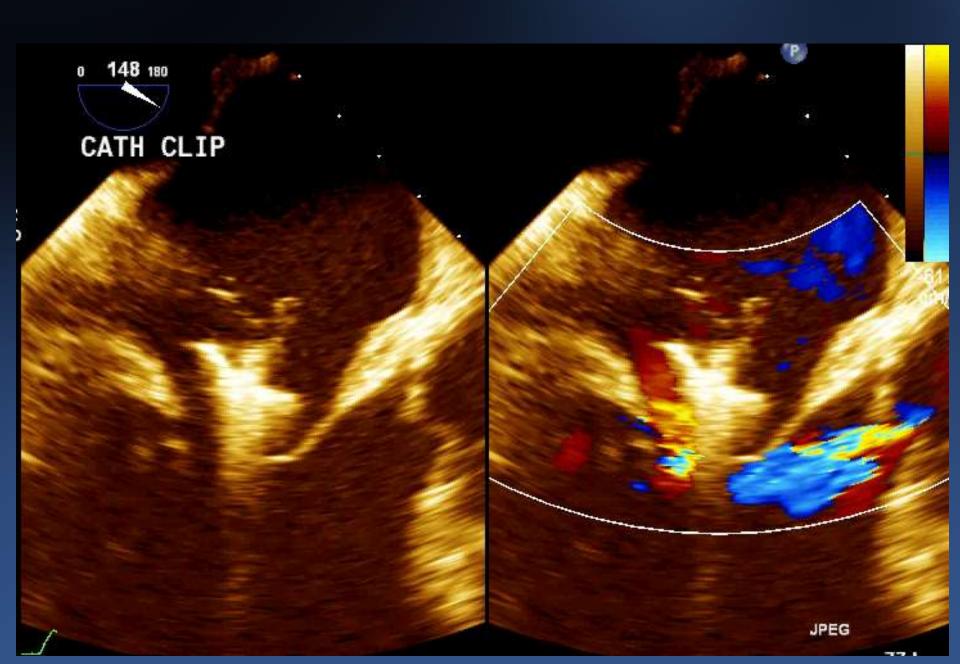
## AN ESTABLISHED THERAPY WITH GLOBAL COMMERCIAL EXPERIENCE

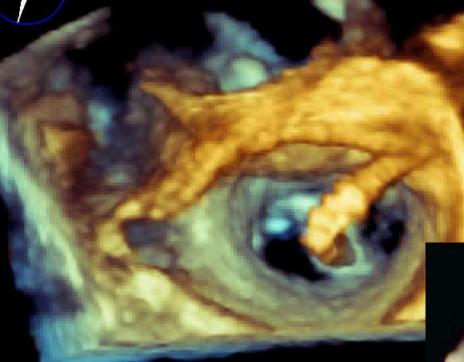


1. Data on file at Abbott, February 28, 2018.

2. First-time procedures only. Includes commercial and clinical patients.

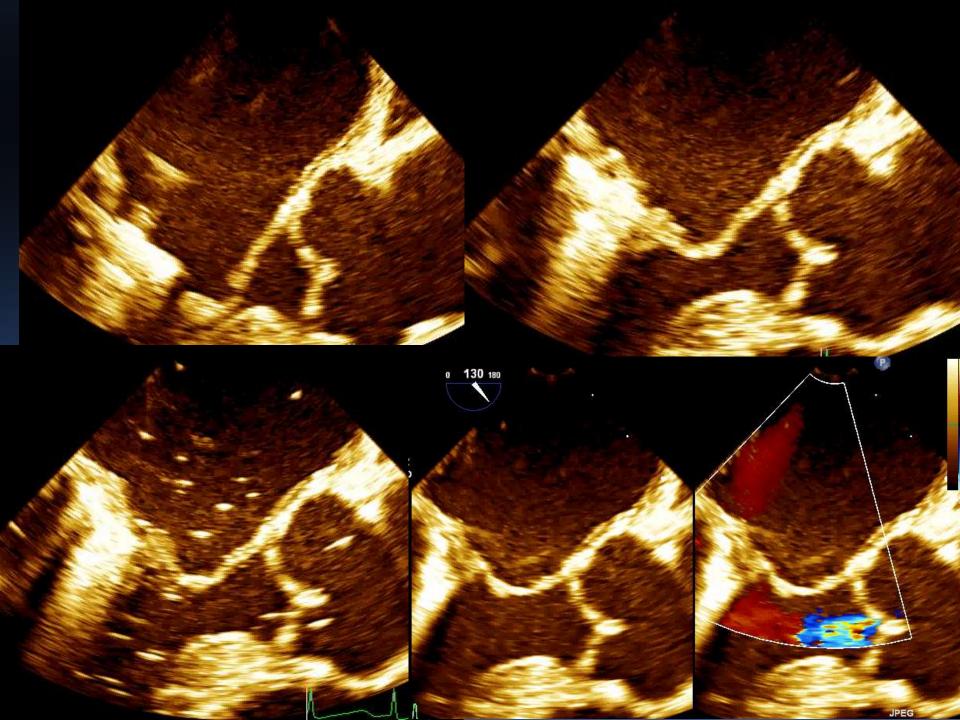


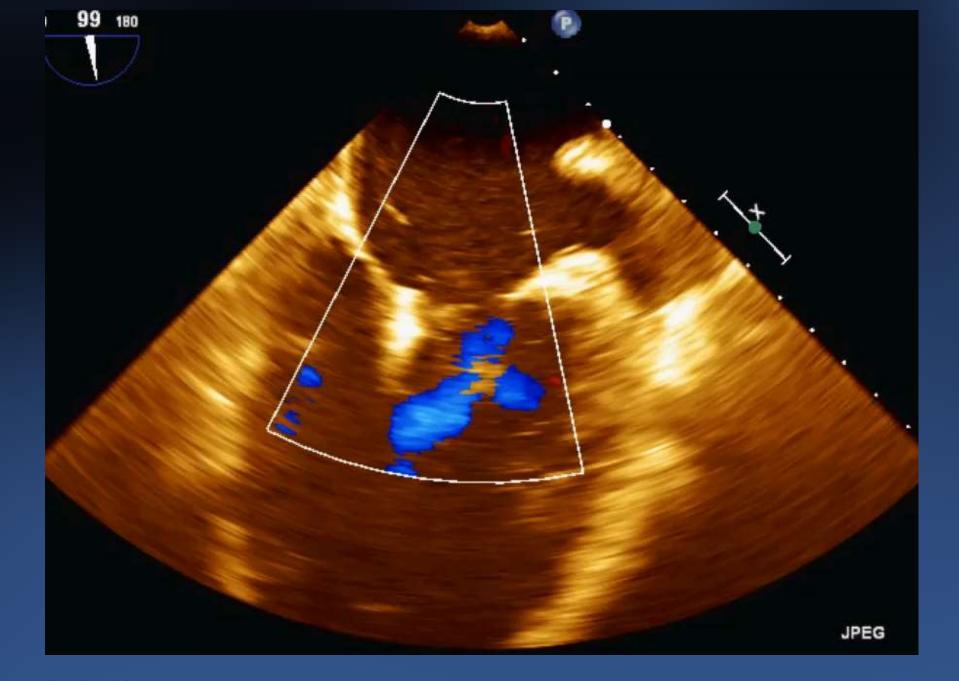


# FMR in pz with DCM


# Colour Doppler shows Central and Lateral Commissural jet







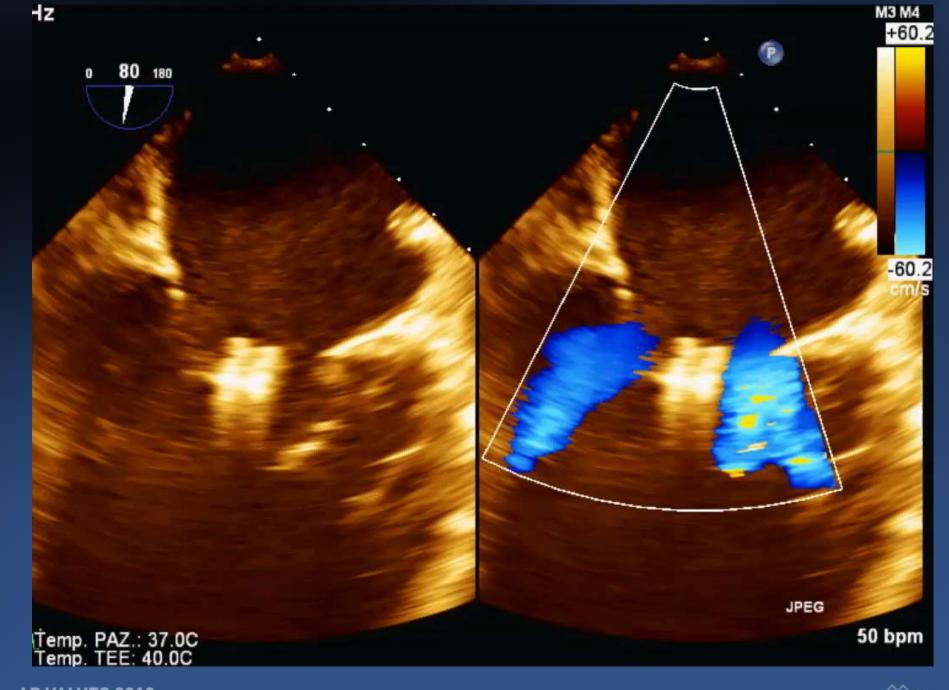



## **3D Orientation**















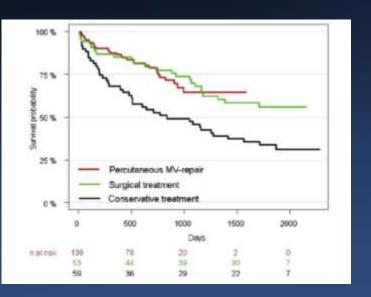




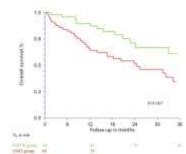


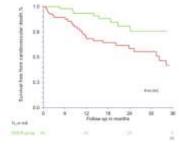

١z

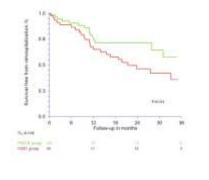
Transgastric view after capture


And 3D surgical view

M3 M4 +61.


> -61 cm/


## Percutaneous repair vs. medical therapy in FMR

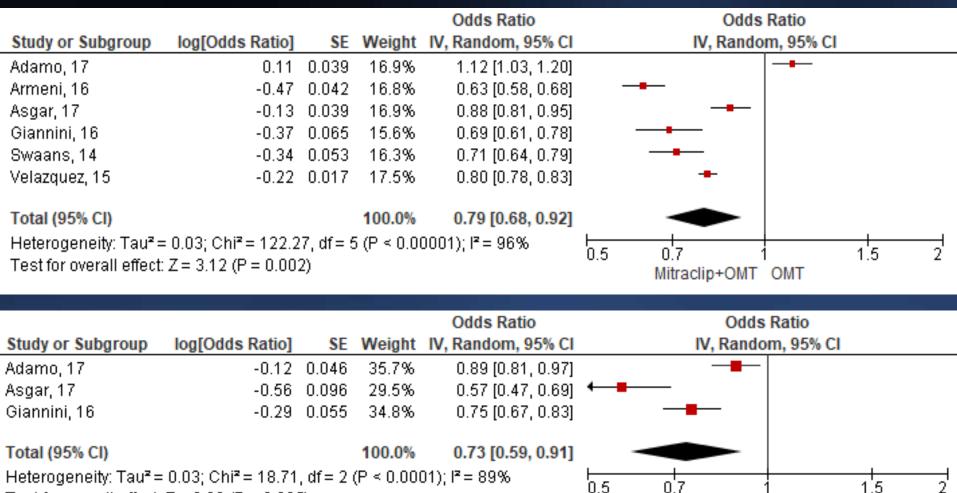

Survival of Transcatheter Mitral Valve Repair Compared With Surgical and Conservative Treatment in High-Surgical-Risk Patients Comparison of Percutaneous Mitral Valve Repair Versus Conservative Treatment in Severe Functional Mitral Regurgitation



Swaans et al; JACC CI 2014








Giannini et al; Am Journal of Cardiology 2016





### A meta-analysis of MitraClip combined with medical therapy versus medical therapy alone for treatment of mitral regurgitation in heart failure patients



Test for overall effect: Z = 2.83 (P = 0.005)

Only FMR patients

#### Giannini et al; ESC HF, 2018

Mitraclip+OMT OMT





| Comparison of Randomized Trials of the MitraClip in patients With Heart Failure and Secondary Mitral<br>Regurgitation |                                                                                                                                                                                                                                                                                                           |                                                                   |                                                                 |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
|                                                                                                                       | COAPT                                                                                                                                                                                                                                                                                                     | <b>RESHAPE-HF</b>                                                 | MITRA-FR                                                        |  |  |
| Number of patients and si<br>tes                                                                                      | 610 patients at 75 U.S. and Canadian sites<br>Data presented at TCT'17                                                                                                                                                                                                                                    | 288 patients at 50 E.U. sit es                                    | 420 patients at 18 French<br>sites<br>Data presented at ESC '18 |  |  |
| Secondary MR grade (cor<br>e laboratory verified)                                                                     | $\geq$ 3+ (EROA $\geq$ 30 mm <sup>2</sup> and/or Rvol > 4 5 ml)                                                                                                                                                                                                                                           | $\geq$ 3+ (EROA $\geq$ 30 mm <sup>2</sup><br>and/or Rvol > 45 ml) | Severe (EROA $\ge$ 20 mm <sup>2</sup> +<br>Rvol > 30 ml)        |  |  |
| NYHA functional class                                                                                                 | II, III, or ambulatory IV                                                                                                                                                                                                                                                                                 | II, III, or ambulatory IV                                         | II-IV                                                           |  |  |
| LVEF                                                                                                                  | ≥ 20% to ≤ 50%                                                                                                                                                                                                                                                                                            | ≥ 15% to ≤ 40%                                                    | ≥ 15% to ≤ 40%                                                  |  |  |
| Surgical criteria                                                                                                     | Not appropriate for mitra valve surger<br>y (heart team)                                                                                                                                                                                                                                                  | None                                                              | None                                                            |  |  |
| Primary efficacy endpoint<br>(superiority)                                                                            | Heart failure rehospedalizations at 1yr                                                                                                                                                                                                                                                                   | Death or heart failure                                            | Death or recurrent heart<br>failure hospedalization at 1<br>yr  |  |  |
| Primary safety endpoint<br>(non inferiority)                                                                          | The composite of SLDA; device emboli<br>zation; endocarditis requiring surgery;<br>echocardiography core laboratory-con<br>firmed mitral stenosis requiring surger<br>y; LVAD implant; heart transplant; or a<br>ny deice-related complications requiri<br>ng nonelective cardiovascular at 12 m<br>onths | None                                                              | None                                                            |  |  |
| Follow-up, yrs                                                                                                        | 5                                                                                                                                                                                                                                                                                                         | 2                                                                 | 2                                                               |  |  |
|                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                   |                                                                 |  |  |



# Conclusion

The limitations given by leaflet morphology can constantly be surpassed by rising experience, placement of multiple clips across multiple segments, or asymmetric convergent clipping.

As long as no left ventricular inlet restriction occurs after clipping, a reduction of the MR bears the potential for clinical improvement.

Considering the clinical profile of the patient, the limits of treatment may be adjusted and residual MR accepted according to the individual therapeutic goal.

