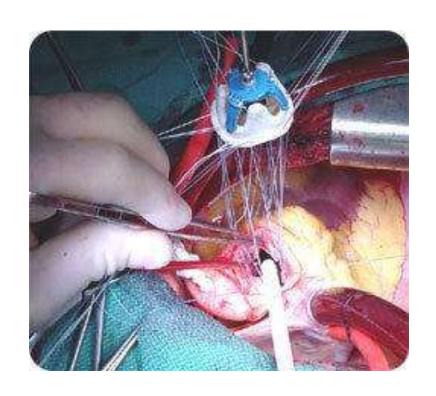


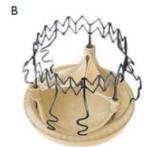
The Rapid Deployment (Sutureless) AVR only for selected patients


Hyun Song, M.D., PhD.

Seoul St.Mary's Hospital, The Catholic University of Korea

Conventional AVR

- **Full Sternotomy**
- CPB/ACC
- Aortotomy
- Resection of native aortic valve
- Aortic valve suture :10~15 ea
- **■** Aortotomy closure
- ACC off / CPB weaning
- Sternotomy closure



Sutureless AVR

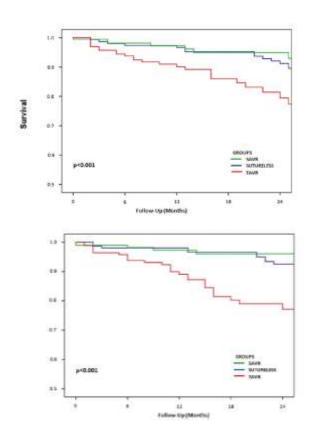
- Sternotomy/thoracotomy
- CPB/ACC
- Aortotomy
- Resection of native aortic valve
- Aortic valve suture : 0~3ea
- Aortotomy closure
- ACC off / CPB weaning
- Sternotomy closure

Sutureless Aortic Valve Replacement International Registry (SU-AVR-IR): design and rationale from the International Valvular Surgery Study Group (IVSSG)

Conventional surgery, sutureless valves, and transapical aortic valve replacement: What is the best option for patients with aortic valve stenosis? A multicenter, propensity-matched analysis

TABLE 5. Postoperative outcomes after TA-TAVR, SU-AVR, and SAVR; analysis included 286 patients with caliper matching 1:1

Outcome	TA-TAVR $(n = 143)$	SU-AVR $(n = 31)$		P value		
			SAVR $(n = 112)$	TA-TAVR vs SU-AVR	TA-TAVR vs SAVR	
Death (n)	10 (7)	0	1 (1.8)	0.21	.026*	
Stroke (n)	4 (2.8)	0	0	1	.13*	
PPM (n)	7 (4.9)	1 (3.2)	1 (0.9)	1	.082*	
RRT (n)	7 (4.9)	1 (3.2)	0	1	.019*	
AMI (n)	5 (3.5)	0	1 (0.9)	0.59	.23*	
Postoperative AR ($\geq 1+/3+$)	41 (28.7)	6 (19.4)	2 (1.8)	0.37	<.001*	
Mean gradient (mm Hg)	10.7 ± 4.4	11.1 ± 3.3	16.5 ± 5.8	0.69*	<.001†	


The Journal of Thoracic and Cardiovascular Surgery · November 2013

A comparison of conventional surgery, transcatheter aortic valve replacement, and sutureless valves in "real-world" patients with aortic stenosis and intermediate- to high-risk profile

TABLE 3. Operative data and performance of hemodynamic prostheses

	SAVR	Sutureless	TAVR		
	n = 204	n = 204	n = 204	P	
Variables	n (%)	n (%)	n (%)	value	
Preoperative echocardio	ography assessi	ment			
Peak gradient (mm Hg)	84 ± 21	80 ± 27	77 ± 20	.084	
Mean gradient (mm Hg)	51 ± 15.2	49 ± 18	48 ± 14	.122	
Valvular area (cm ²)	0.77 ± 0.21	0.66 ± 0.2	0.7 ± 0.2	.017	
CPB time (min)	79.4 ± 12.4	50 ± 11.5		<.001	
Aortic crossclamp	61.2 ± 11.7	32.8 ± 12.6		<.001	
time (min)					
MV >48 h	7 (3.4)	4(1.9)	3 (1.5)	.066	
ICU stay (d)	2.2 ± 3.4	1.6 ± 2.3	3.2 ± 2	.011	
Prostheses diameters	22.4 ± 2.0	23.3 ± 2.7	25.8 ± 1.5	<.001	
(mm)					
Hemodynamic paramet	ers at discharge	2			
Postoperative peak		19.52 ± 12.45	14.34 ± 7.5	.015	
gradient (mm Hg)					
Postoperative mean gradient (mm Hg)	11.4 ± 6	10.8 ± 6.8	7.6 ± 4.2	.077	
AR greater than grade 2	1 (0.5)	4(1.9)	18 (8.8)	.028	

A comparison of conventional surgery, transcatheter aortic valve replacement, and sutureless valves in "real-world" patients with aortic stenosis and intermediate- to high-risk profile

TABLE 4. Postoperative complications

	SAVR (G3)	Sutureless (G2)	TAVR (G3)				
	n = 204	n = 204	n = 204		P value	P value	P value
Variables	n (%)	n (%)	n (%)	P value	G1 vs G2	G1 vs G3	G2 vs G3
Bleeding requiring revision	6 (2.9)	10 (4.9)	4 (1.9)	.526	.447	.271	.314
Anemia requiring at least 2 units of RBCs	116 (57)	73 (35.7)	67 (32.8)	<.001	<.001	<.001	.683
Acute renal failure	30 (14.7%)	11 (5.3)	24 (11.7)	.007	.003	.462	.039
CVVH	7 (3.4)	3 (1.5)	12 (5.8)	.063	.547	.255	.019
Stroke	6 (2.9)	4 (2)	7 (3.4)	.661	.617	.733	.587
Peripheral vascular complications	0 (0)	0 (0)	20 (9.8)	<.001	1	<.001	<.001
PM implantation	8 (3.9)	20 (9.8)	30 (14.7)	<.001	.021	<.001	.228
30-d mortality	7 (3.4)	12 (5.8)	20 (9.8)	.005	.341	.015	.341

SAVR, Surgical aortic valve replacement; TAVR, transcatheter aortic valve replacement; RBC, red blood cell; CVVH, continuous venovenous hemofiltration; PM, pacemaker.

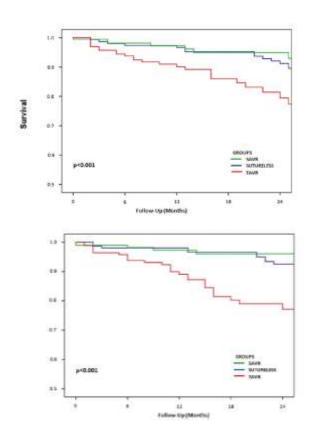
The Journal of Thoracic and Cardiovascular Surgery c December 2015

Sutureless versus Conventional Aortic Valve Replacement:

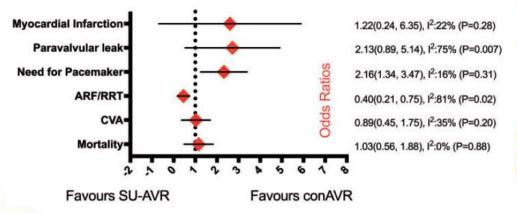
Tex Heart Inst J 2018;45(1):11-6

Outcomes in 70 High-Risk Patients Undergoing Concomitant Cardiac Procedures

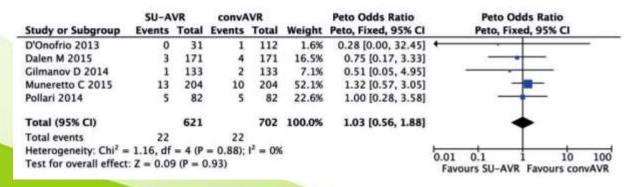
TABLE II. Comparison of Operative and Postoperative Results


Variable	Group 1 (Sutureless AVR) (n=38)	Group 2 (Conventional AVR) (n=32)	P Value
Operative time (min)	253 ± 76	350 ± 85	0.001
Cross-clamp time (min)	78 ± 28	122 ± 38	0.001
CPB time (min)	119 ± 42	166 ± 50	0.001
Ventilator dependence (hr)	9.4 ± 3.5	11.6 ± 7.8	0.134
Intensive care unit stay (d)	4.2 ± 3.7	4.9 ± 4.8	0.462
Drainage (mL)	396 ± 153	1,010 ± 1,208	0.009
Re-exploration for bleeding	2 (5.3)	2 (6.3)	0.999
Red blood cell transfusion (U)	2.2 ± 1.8	3.4 ± 3	0.037
FFP transfusion (U)	2.2 ± 1.9	2.9 ± 3.4	0.262
30-day hospital death	2 (5.3)	5 (15.6)	0.234
Hospital stay (d)	9.3 ± 5.1	13.6 ± 6.6	0.004

A comparison of conventional surgery, transcatheter aortic valve replacement, and sutureless valves in "real-world" patients with aortic stenosis and intermediate- to high-risk profile


TABLE 3. Operative data and performance of hemodynamic prostheses

	SAVR	Sutureless	TAVR		
	n = 204	n = 204	n = 204	P	
Variables	n (%)	n (%)	n (%)	value	
Preoperative echocardio	ography assessi	ment			
Peak gradient (mm Hg)	84 ± 21	80 ± 27	77 ± 20	.084	
Mean gradient (mm Hg)	51 ± 15.2	49 ± 18	48 ± 14	.122	
Valvular area (cm ²)	0.77 ± 0.21	0.66 ± 0.2	0.7 ± 0.2	.017	
CPB time (min)	79.4 ± 12.4	50 ± 11.5		<.001	
Aortic crossclamp	61.2 ± 11.7	32.8 ± 12.6		<.001	
time (min)					
MV >48 h	7 (3.4)	4(1.9)	3 (1.5)	.066	
ICU stay (d)	2.2 ± 3.4	1.6 ± 2.3	3.2 ± 2	.011	
Prostheses diameters	22.4 ± 2.0	23.3 ± 2.7	25.8 ± 1.5	<.001	
(mm)					
Hemodynamic paramet	ers at discharge	2			
Postoperative peak		19.52 ± 12.45	14.34 ± 7.5	.015	
gradient (mm Hg)					
Postoperative mean gradient (mm Hg)	11.4 ± 6	10.8 ± 6.8	7.6 ± 4.2	.077	
AR greater than grade 2	1 (0.5)	4(1.9)	18 (8.8)	.028	


Meta-analysis of sutureless technology versus standard aortic valve replacement and transcatheter aortic valve replacement

Saqib H. Qureshi^{a,*}, Anas Boulemden^a, Adam Szafranek^a and Hunaid Vohra^b

DISCUSSION

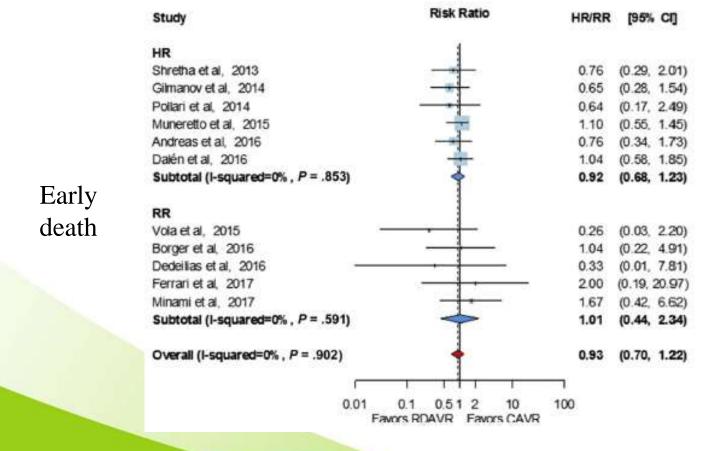
This meta-analysis attempted to evaluate evidence with the aim to appraise clinicians on the quality and direction of available evidence. The key findings are that SU-AVR is associated with 30% reduction in relative risk for PVL and 30-day mortality compared with TAVR. The effect of SU-AVR on 30-day mortality versus conAVR requires further evidence. There is also 'firm evidence' to implicate sutureless technology associated with the increased risk of PPM compared with conAVR.

30 day mortality

Meta-analysis of sutureless technology versus standard aortic valve replacement and transcatheter aortic valve replacement

Saqib H. Qureshi^{a,*}, Anas Boulemden^a, Adam Szafranek^a and Hunaid Vohra^b

Implications for clinical practice


Recent expert consensus supports the use of sutureless technology in patients with isolated or concomitant procedures where controlling CPB comorbidity is imperative and in calcified root, porcelain aorta as well as prior implantation of aortic homograft [29]. Acknowledging the limitations of current evidence, this meta-analysis advocates selected patients with worse annular characteristics and higher inherent risk for PVL to be offered SU-AVR and not TAVR. Neither superiority nor inferiority can be firmly established against conAVR. It is our recommendation that the safety and efficacy of sutureless and rapid-deployment technology should be further tested in large-scale randomized trials controlling annular characteristics beyond other variables against both TAVR and conAVR.

European Journal of Cardio-Thoracic Surgery 53 (2018) 463-471

Rapid deployment or sutureless versus conventional bioprosthetic aortic valve replacement: A meta-analysis

Suk Ho Sohn, MD,^a Myoung-jin Jang, PhD,^b Ho Young Hwang, MD, PhD,^a and Kyung Hwan Kim, MD, PhD^a



The Journal of Thoracic and Cardiovascular Surgery • Volume 155, Number 6

Rapid deployment or sutureless versus conventional bioprosthetic aortic valve replacement: A meta-analysis

Suk Ho Sohn, MD,^a Myoung-jin Jang, PhD,^b Ho Young Hwang, MD, PhD,^a and Kyung Hwan Kim, MD, PhD^a

The Journal of Thoracic and Cardiovascular Surgery • Volume 155, Number 6

PPM

Rapid deployment or sutureless versus conventional bioprosthetic aortic valve replacement: A meta-analysis

Suk Ho Sohn, MD,^a Myoung-jin Jang, PhD,^b Ho Young Hwang, MD, PhD,^a and Kyung Hwan Kim, MD, PhD^a

CONCLUSIONS

Aortic valve replacement with RD valves is associated with significantly shorter ACC and CPB times than conventional AVR, although these differences did not translate into improved postoperative complications and mortality early after surgery and during the follow-up. Care might be needed when implanting RD valves because they are associated with a higher incidence of PPM insertion, regardless of the RD valve type.

The Journal of Thoracic and Cardiovascular Surgery • Volume 155, Number 6

Cost in Korea

Valve	Price	Pt's pay(%)	Pt's pay
Sutureless valve	₩11,000,000 (\$9,792)	50	₩5,500,000 (\$4,896)
Conventional valve	₩2,802,660 (\$2,500)	5	₩140,133 (\$125)

Conclusion

- We can not justify the use of Sutureless valve instead of classical valve
 - There are no definite advantanges sutureless valve can only save operation time just less than 30min.
 - There are two definite disadvantages paravalvular leakage and permanent pacemaker insertion
 - The patient and the government have to spend a lot of money (patient 50times, government 4times)

감사합니다!! Thank you!!