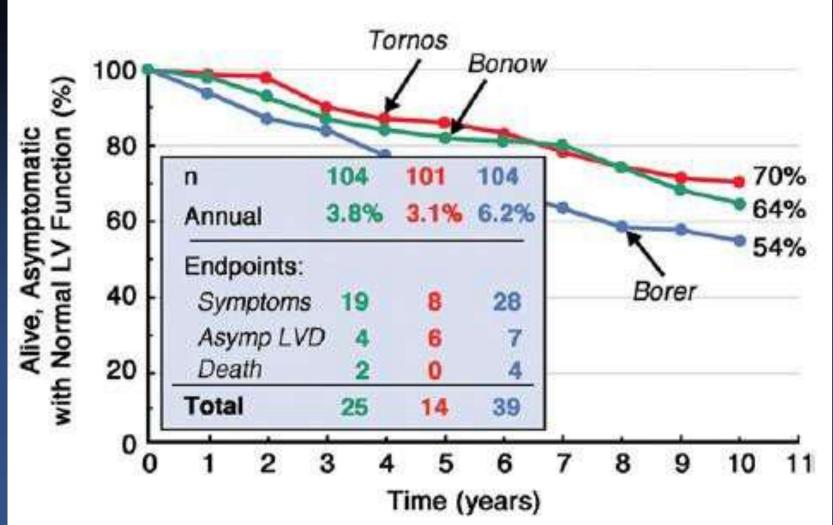
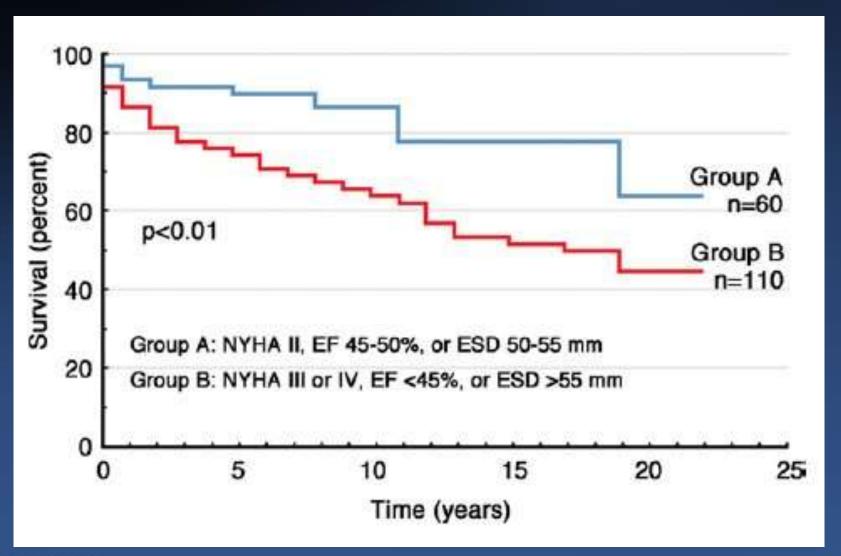

TAVR for Pure AR: International Registry Data and Technical Pearls

Anna Sonia Petronio, MD, FESC

Head of Cardiac Catheterization Lab
Cardiothoracic and Vascular Department
University of Pisa, Italy
as.petronio@gmail.com

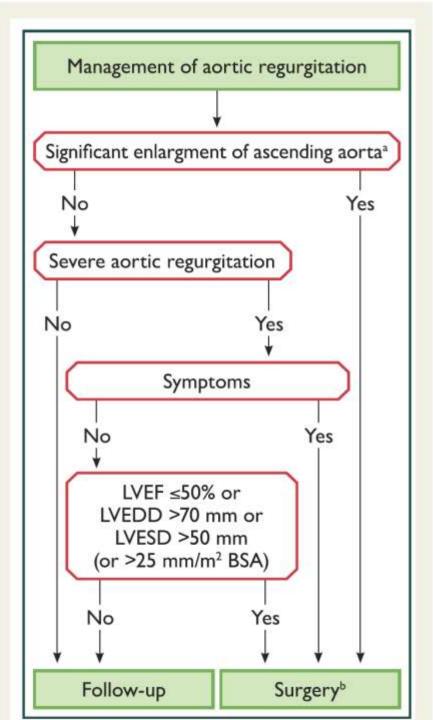


Distribution of Valvular Heart Diseases in the Euro Heart Survey



Third valvulopaty

Aortic regurgitation: Natural Hystory in Asymptomatic Patients



Survival after AVR for AR

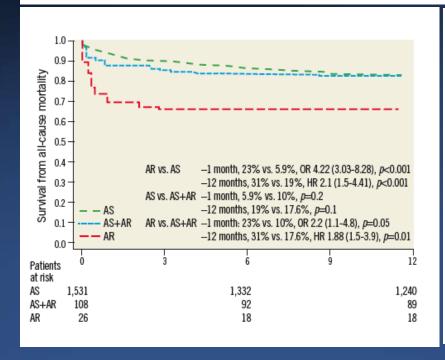
Aortic regurgitation: Natural Hystory

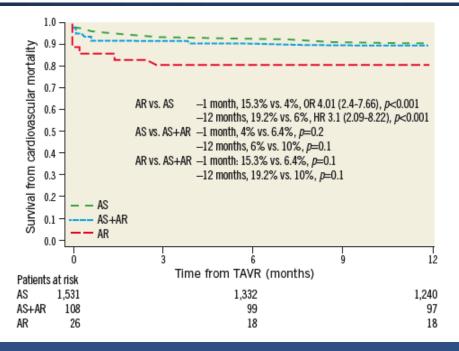
Asymptomatic	%/Y
 Normal LV function (~good prognosis) 	
 Progression to symptoms or LV dysfunction 	< 6
 Progression to asymptomatic LV dysfunction 	< 3.5
75% 5-year survival	< 0.2
 Sudden death 	
 Abnormal LV function 	25
 Progression to cardiac symptoms 	23
 Symptomatic (Poor prognosis) 	> 10
 Mortality 	

Indications for surgery in (A) severe aortic regurgitation and (B) aortic root disease (irrespective of the severity of aortic regurgitation)

Indications for surgery	Classa	Levelb		
A. Severe aortic regurgitation				
Surgery is indicated in symptomatic patients. ^{57,58,66,67}	ı	В		
Surgery is indicated in asymptomatic patients with resting LVEF ≤50%. ^{57,58}	1	В		
Surgery is indicated in patients undergoing CABG or surgery of the ascending aorta or of another valve.	1	С		
Heart Team discussion is recommended in selected patients ^c in whom aortic valve repair may be a feasible alternative to valve replacement.	1	С		
Surgery should be considered in asymptomatic patients with resting ejection fraction >50% with severe LV dilatation: LVEDD >70 mm or LVESD >50 mm (or LVESD >25 mm/m ² BSA in patients with small body size). ^{58,66}	lla	В		

Aortic regurgitation: Management


- Is there a place for TAVI or re-TAVI?
- Patients with severe aortic regurgitation and at high or extreme surgical risk for whom conventional surgical aortic valve replacement may be unsuitable and who might benefit from transcatheter-based therapy.
- Patients with severe aortic regurgitation following TAVI or AVR


Still an off-label indication?

CoreValve implantation for severe aortic regurgitation: a multicentre registry

Luca Testa^{1*}, MD, PhD; Azeem Latib², MD; Marco Luciano Rossi³, MD; Federico De Marco⁴, MD; Marco De Carlo⁵, MD; Claudia Fiorina⁶, MD; Jacopo Oreglia⁴, MD; Anna Sonia Petronio⁵, MD; Federica Ettori⁶, MD; Stefano De Servi⁷, MD; Silvio Klugmann⁴, MD; Gian Paolo Ussia⁸, MD; Corrado Tamburino⁸, MD; Paolo Panisi¹, MD; Nedy Brambilla¹, MD; Antonio Colombo², MD; Patrizia Presbitero³, MD; Francesco Bedogni¹, MD

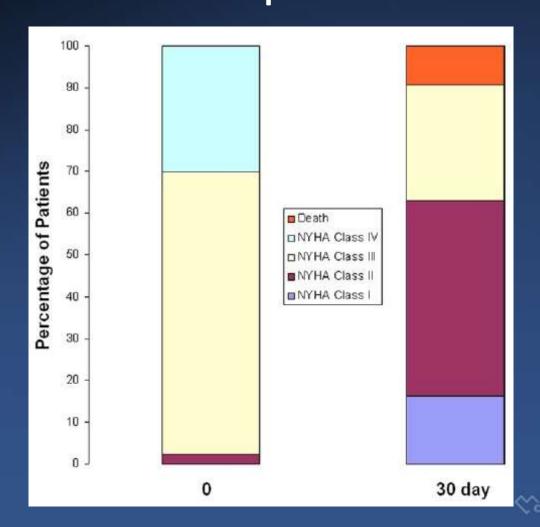
Native aortic regurgitation and TAVI

Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 61, No. 15, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2013.01.018

CLINICAL RESEARCH

Interventional Cardiology

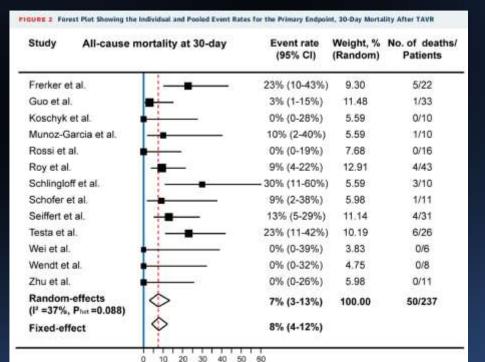
Transcatheter Aortic Valve Implantation for Pure Severe Native Aortic Valve Regurgitation


David A. Roy, MD,* Ulrich Schaefer, MD, PhD,† Victor Guetta, MD,‡ David Hildick-Smith, MD,§ Helge Möllmann, MD,|| Nicholas Dumonteil, MD,¶ Thomas Modine, MD,# Johan Bosmans, MD,** Anna Sonia Petronio, MD,†† Neil Moat, MBBS, MS,‡‡ Axel Linke, MD,§§ Cesar Moris, MD,||| Didier Champagnac, MD,¶¶ Radoslaw Parma, MD, PhD,## Andrzej Ochala, MD,## Diego Medvedofsky, MD,‡ Tiffany Patterson, MD,‡‡ Felix Woitek, MD,§§ Marjan Jahangiri, MD,* Jean-Claude Laborde, MD,* Stephen J. Brecker, MD*

Native aortic regurgitation and TAVI 43 patients

Clinical and Safety Outcomes According to VARC

Mortality	
30-day all-cause	4 (9.3%)
30-day cardiovascular	1 (2.3%)
12 month all-cause	6/28 (21.4)
12-month cardiovascular	3/28 (10.7)
Major stroke (30 days)	2 (4.7)
Major bleeding	8 (18.6)
Acute kidney injury (stage 3)	2 (4.7)
Myocardial infarction	0
Access site complications	6 (14.0)
Major	3 (7.0)
Minor	3 (7.0)
VARC procedure success	32 (74.4)


Native aortic regurgitation and TAVI

Transcatheter Aortic Valve Replacement for the Treatment of Pure Native Aortic Valve Regurgitation

A Systematic Review

Anna Franzone, MD, a Raffaele Piccolo, MD, George C.M. Siontis, MD, Jonas Lanz, MD, Stefan Stortecky, MD, Fabien Praz, MD, Eva Roost, MD, René Vollenbroich, MD, MPP, Stephan Windecker, MD, Thomas Pilgrim, MD

Event rate, %

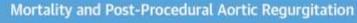
FIGURE 3 Meta-Analysis of Secondary Endpoints

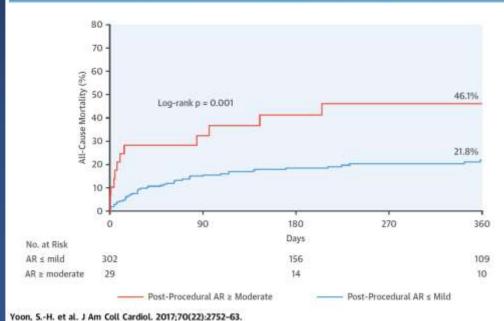
Endpoint	No. of Studies	No. of Events/Patients	Event rate (95% Ci)					P
Myocardial infarction	13	0/237	0%					0%
Stroke or TIA	13	2/2/37	0% (0-1%)	4				0%
Acute kidney injury (Stage 3)	12	20/211	7% (2-15%)	+		4		54%
Major bleeding	13	15/237	2% (0-7%)		4			41%
Major vascular complication	13	12/237	3% (1-7%)	1	-1			0%
PPM implantation	13	34/237	11% (5-19%)			-1		50%
Moderate or severe AR	12	41/215	9% (0-28%)				\dashv	90%
				0	10	20	30	
					Even	t rate, %		

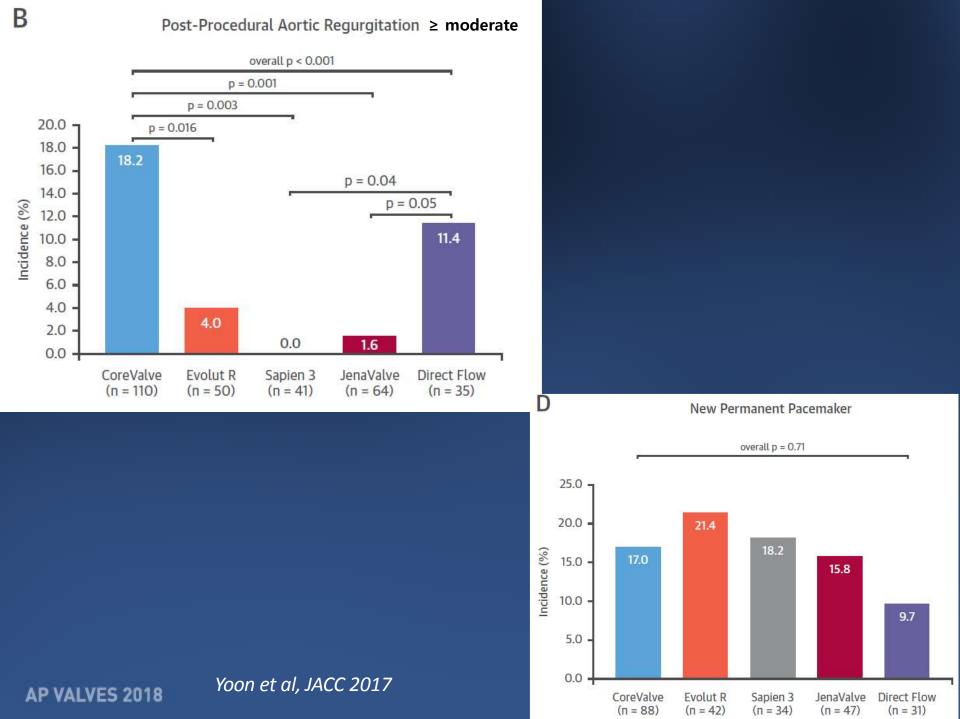
Native aortic regurgitation and TAVI

Transcatheter Aortic Valve Replacement in Pure Native Aortic Valve Regurgitation




Sung-Han Yoon, MD, a Tobias Schmidt, MD, b Sabine Bleiziffer, MD, Niklas Schofer, MD, d Claudia Fiorina, MD, Antonio J. Munoz-Garcia, MD, Ermela Yzeiraj, MD, Ignacio J. Amat-Santos, MD, Didier Tchetche, MD, Christian Jung, MD, Buntaro Fujita, MD, Antonio Mangieri, MD, Marcus-Andre Deutsch, MD, Antonio Mangieri, MD, Marcus-Andre Deutsch, MD, Antonio MD, Boliara Deuschl, MD, Shingo Kuwata, MD, Chiara De Biase, MD, Timothy Williams, MD, Abhijeet Dhoble, MD, Won-Keun Kim, MD, Chiara De Biase, MD, Timothy Williams, MD, Antonio Miceli, MD, Cristina Giannini, MD, Guiherme F. Attizzani, MD, William K.F. Kong, MD, Enrique Gutierrez-Ibanes, MD, Victor Alfonso Jimenez Diaz, MD, Harindra C. Wijeysundera, MD, Hidehiro Kaneko, MD, Tarun Chakravarty, MD, Moody Makar, MD, Horst Sievert, MD, Christian Hengstenberg, MD, Md Bernard D. Prendergast, MD, Flavien Vincent, MD, Mohamed Abdel-Wahab, MD, Luis Nombela-Franco, MD, Miriam Silaschi, MD, Giuseppe Tarantini, MD, Christian Butter, MD, Stephan M. Ensminger, MD, David Hildick-Smith, MD, Anna Sonia Petronio, MD, Wei-Hsian Yin, MD, Karl-Heinz Kuck, MD, Antonio Colombo, MD, Saibal Kar, MD, Cesar Moris, MD, Victoria Delgado, MD, Francesco Maisano, MD, Fabian Nietlispach, MD, Michael J. Mack, MD, Dachim Schofer, MD, Ulrich Schaefer, MD, Jeroen J. Bax, MD, Christian Frerker, MD, Azeem Latib, MD, Raj R. Makkar, MD


JACC 2017


Outcomes According to Devices

Yoon et al, JACC 2017

Technical Challenging in TAVI for aortic regurgitation

Morphological Features of Aortic Valve Stenosis or Regurgitation

Calcific Aortic Valve Stenosis

1- Nodular calcific deposits on aortic side

Aortic Valve Regurgitation

- 1- Minimal or absent cusp calcification
- 2- Dilated aortic root
- 3- Frequent coexistence of dilated ascending aorta

Technical Challenges of TAVR in Aortic Valve Regurgitation

Suboptimal Fluoroscopic Visualization of the Native Valve

Insufficient Anchoring and Sealing of the Transcatheter Device

Risk of Misplacement and Migration of the Device Risk of Residual Valvular Regurgitation

Tips and Tricks

- Suboptimal fluoroscopic visualization of cuspid us e two pigtails as reference
- Insufficient anchoring due to lack of calcifications use repositionable and retrievable devices. Considering pacing during implant
- Risk of residual valvular regurgitation and use device with perianular skirt

oversize the valve

B Device		Design; Delivery Access	Features
	ACURATE (Symetis)	Self-expandable nitinol stent; Transapical Transfemoral	Self-positioning at supra-annular level; fixed in a waistlike manner, thereby covering the aortic annulus (hourglass design); tactile feedback reducing the risk of malpositioning; possibility of partial resheating
	JenaValve* (JenaValve Technology)	Self-expandable nitinol stent; Transapical	Feeler-guiding positioning and clip fixation mechanism of the native aortic valve leaflet; retrievable and repositionable
	CoreValve Revalving System (Medtronic)	Self-expandable nitinol frame; Transfemoral	The lower portion of the prosthesis has high radial force to expand and exclude the native leaflets and to avoid recoil; the middle portion is constrained to avoid the coronary arteries and the upper portion is flared to center and fix the stent frame firmly in the ascending aorta and to provide longitudinal stability and coaxial positioning
	Direct Flow (Direct Flow Medical)	Non-metallic framework and two inflatable rings; Transfemoral	Peculiar anchoring mechanisms (inflatable rings) not requiring calcium for sealing; repositionability and retrievability; functional during positioning (ensures hemodynamic stability); fully retrievable
	Engager** (Medtronic)	Self-expandable nitinol stent; Transapical	Trapping of valve leaflets in order to stabilize the sytem and to avoid coronary ostia occlusion
	Helio dock** (Edwards Lifesciences)	Self-expandable nitinol stent; Transfemoral	The dock is fixed inside the aortic root and assists in annular fixation of a standard balloon-expandable SAPIEN XT transcatheter heart valve by incorporating and entrapping the native cusps
	CoreValve Evolute R** (Medtronic)	Self-expandable; Transfemoral	Recapturability and repositionability; supra-annular position
	J-Valve (JieCheng Medical Technology)	Self-expandable nitinol stent; Transapical	Featured by three U-shape anatomically oriented devices-graspers- which facilitate 'self-positioning' during implantation and provide extra-radial fixation by embracing the native valve leaflets (clip mechanism). The two stages releasing design facilitates accurate position
	Lotus** (Boston Scientific)	Nitinol frame with an Adaptive SeaITM Technology; Transfemoral	Mechanically deployed with possibility to retrieve and reposition; early functional during deployment

Conclusions

- Preliminary experiences (registries) are available for the use of TAVI in patients with severe aortic regurgitation at high risk for surgery.
- TAVI represents a valid option for the treatment of para- valvular regurgitation and intra-prosthetic regurgitation as a valve-in-valve procedure.
- New generation and repositioning devices are able to limit residual AR following TAVI.
- Ad hoc studies are necessary to evaluate outcome of new generation devices and to consider TAVI as a frontline treatment option for high risk patients with native severe AR.

Thanks for your attention

