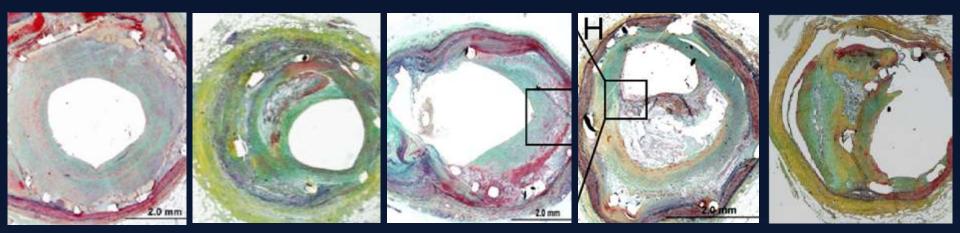
Neoatherosclerosis in New DES: Insight from Intracoronary Imaging

Soo-Jin Kang, MD., PhD.

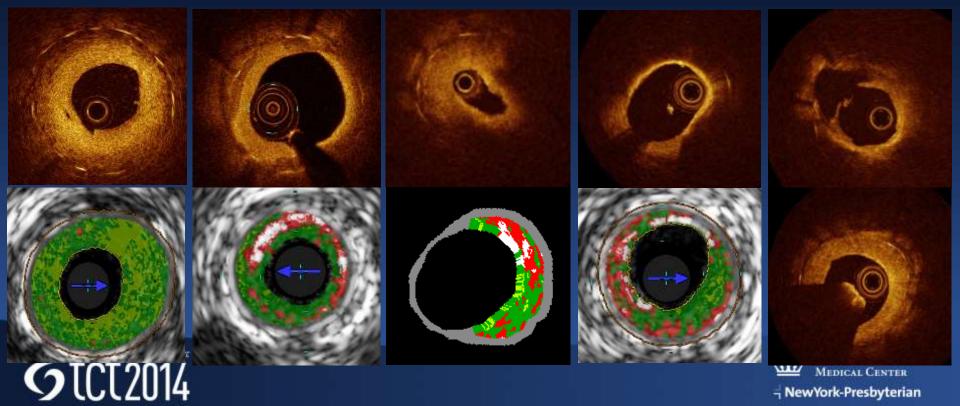
University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure Statement of Financial Interest

I, Soo-Jin Kang DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation



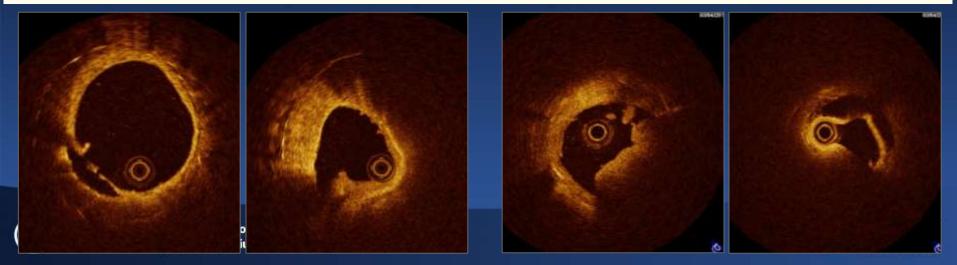
Early neointima Fibrocalcific


ThCFA

TCFA I

Intimal rupture

Nakazawa et al. JACC Cariovasc Imaging 2009;2:625-8


Late ISR 63-year old male Stable angina

VLST 60-year old male AMI with VLST

IMAGES IN CARDIOLOGY

Neoatherosclerosis: The Missing Link Between Very Late Stent Thrombosis and Very Late In-Stent Restenosis

Fernando Alfonso, MD, Federico Fernandez-Viña, MD, Miguel Medina, MD, Rosana Hernandez, MD Madrid, Spain

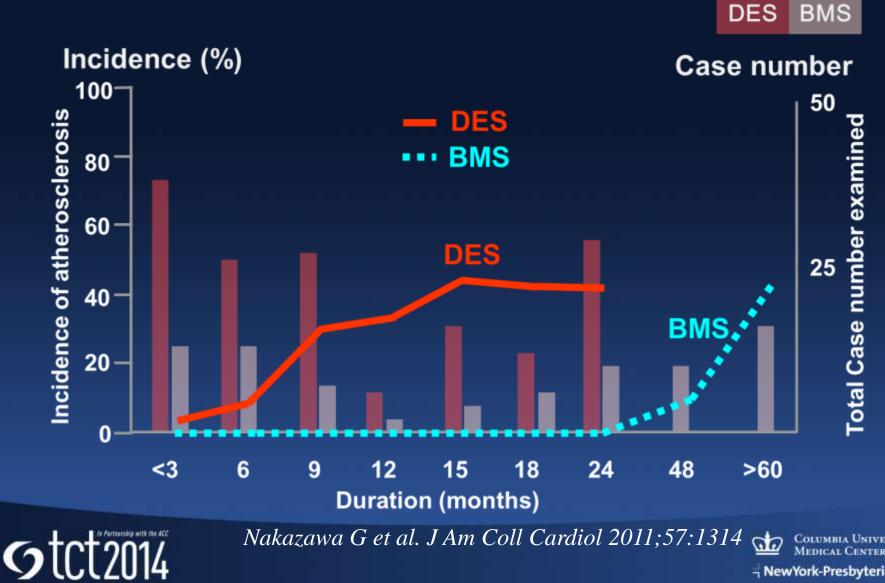
How Frequent is Neoatherosclerosis the Mechanism of Stent Failure? Stent failure OCT data from AMC

	DES-ISR ¹	BMS-ISR ²	VLST ³	
Lesion	50 DES	51 BMS	6 BMS	27 DES
Median F/U	32 Mo	132 Mo	109 Mo	62 Mo
Lipid or NC	90%	100%	100%	100%
OCT-TCFA	52%	68%	100%	56%
OCT-rupture	58%	59%	100%	63%
TLR	98%	all	all	all

- *I. Kang et al. Circulation 2011;123:2954-63*
- 2. Kang et al. JACC Cardiovasc Imaging 2012;5:1267-8

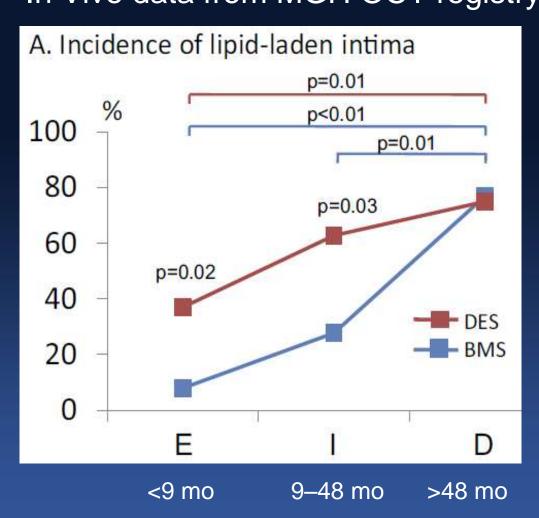
. Kang et al. JACC Cardiovasc Imaging 2013;6:695-703 🎃 Columbia Uni

- NewYork-Presbyterian


Neoatherosclerosis BNS vs. DES

Incidence and Time Course Autopsy data from CVpath

– NewYork-Presbyterian


Frequency of Neoatherosclerosis Autopsy Data from CVpath

Stratified by Duration

- NewYork-Presbyterian

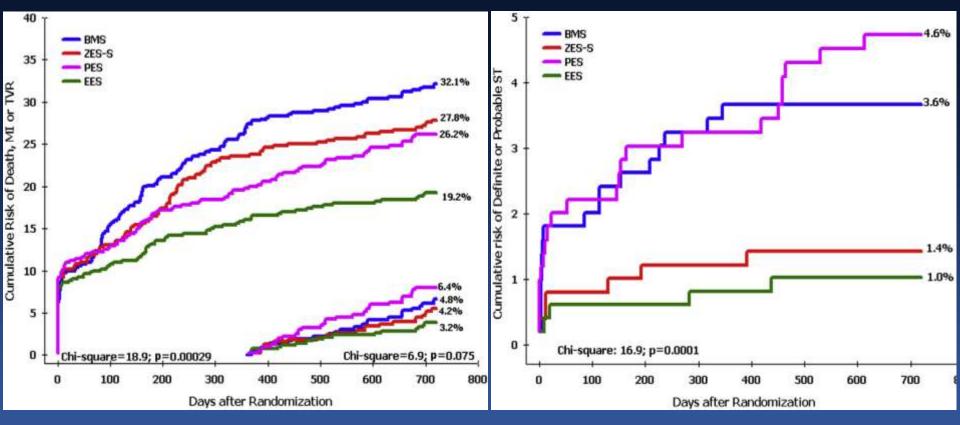
				Suamed by	
	Nakazawa (CVPath) ¹		100 - 90 -		BMS
Lesion	197 BMS	209 DES	80 -		DES
F/U duration	72 Mo	14 Mo	70 - 60 -		
Stent failure	ISR 27% ST 4%	ISR 6% ST 20%	50 - 40 - 30 -	p<0.001	p=0.053
Neoathero- sclerosis*	16%	31%	20 - 10 -	29% 0%	22%
* foamy macrophage infiltration within intima				≤2 years	2-6 years
6 trt2n1/ Nakazawa et al. JAm Coll Cardiol 2011:57:1314-22					

Incidence and Time Course In Vivo data from MGH OCT registry

Yonetsu et al. Am J Cardiol 2012;110:933–9

Neoatherosclerosis Old vs. Never DES

- New anti-proliferative drugs
- Biodegradable polymer
- Thinner struts
- Associated with better strut coverage
- \rightarrow Expected to reduce neoatherosclerosis...



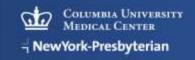
BMS vs. Old- vs. Newer-Generation DESs in All-Comers Undergoing PCI (PROGIDT)

Cumulative MACE at 2 years

Cumulative ST at 2 years

EES showed the lowest rate of MACE and ST

Valgimigli et al. J Am Coll Cardiol Intv 2014;7:20–8



Frequency of Neoatherosclerosis Pathology of EES vs. SES vs. PES

	73 SES	85 PES	46 EES	P	P
				VS. 5E5	vs. PES
Median F/U	9 months	7 months	7 months		
Uncovered strut, %	18.0 (0-51.4)	18.7 (7.1-44.4)	2.6 (0-7.1)	<0.001	<0.001
Fibrin deposition,%	29.9 (12.1–59.9)	51.1 (36.9–72.9)	8.5 (0-28.2)	0.001	<0.001
Inflammatory score	1.0 (0.3–2.0)	1.0 (0.1–1.4)	0.26 (0-0.6)	<0.001	0.006
Neoatherosclerosis	25 (35%)	15 (19%)	12 (29%)	0.91	0.19

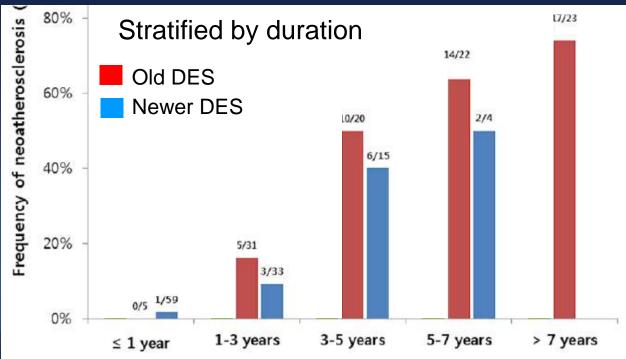
Otsuka, Virmani et al. Circulation 2014;129:211-23

Optical Coherence Tomographic Observation of In-Stent Neoatherosclerosis in Lesions With More Than 50% Neointimal Area Stenosis After Second-Generation Drug-Eluting Stent Implantation

Seung-Yul Lee, MD*; Seung-Ho Hur, MD*; Sang-Gon Lee, MD; Sang-Wook Kim, MD; Dong-Ho Shin, MD, MPH; Jung-Sun Kim, MD; Byeong-Keuk Kim, MD; Young-Guk Ko, MD; Donghoon Choi, MD; Yangsoo Jang, MD; Myeong-Ki Hong, MD

212 DESs with IH>50% from Korean multicenter OCT registry

	1 st DES	2 nd DES	p value
Ν	101	111	
Age, years	66 (59–72)	62 (55–70)	0.002
LDL >70mg/dl	55 (55%)	40 (36%)	0.007
Use of ACE-inh/ARB	55 (55%)	77 (70%)	0.025
Use of statin	92 (91%)	97 (87%)	0.39
ACS as clinical presentation	12 (12%)	5 (5%)	0.048


Lee SY, Hong MK et al. Circ Cardiovasc Interv 2015;8:e001878

CardioVascular Research Foundatio

OCT Findings: Old vs. Newer DES

	1 st DES	2 nd DES	p value
Stent duration, months	55 (34–80)	12 (11–21)	<0.001
NA (lipid or calcium)	46 (46%)	12 (11%)	<0.001
In-stent TCFA	21 (21%)	6 (5%)	0.001
Neointimal rupture	7 (7%)	1 (1%)	0.005

Predictors of Neoatherosclerosis

	OR	95% CI	p value
Stent duration, months	1.7	1.4 – 2.1	<0.001
LDL >70 mg/dl	2.5	1.0 – 6/1	0.038
Chronic renal disease	4.1	1.1 – 15.6	0.037
Diabetes	1.0	0.4 – 2.4	0.99
Use of newer DES	0.5	0.2 – 1.5	0.23
ACE inh/ARB	1.6	0.6 - 3.9	0.33
Statin	0.5	0.1 – 1.8	0.29

Use of newer DES is not more protective against neoatherosclerosis compared with old DES Endothelial maturation is still insufficient in both

Lee SY, Hong MK et al. Circ Cardiovasc Interv 2015;8:e001878

Old vs. Newer Generation DES-ISR Propensity matching

	Old DES (n=51)	Newer DES (n=35)	р
Age	61.80±10.82	61.03±8.93	0.727
Sex	41 (80.4%)	26 (74.3%)	0.502
DM	21 (41.2%)	13 (37.1%)	0.707
HTN	28 (54.9%)	25 (71.4%)	0.122
Dyslipidemia	42 (82.4%)	30 (85.7%)	0.678
ACS	10 (29.4%)	3 (20.0%)	0.130
DES types	SES 31%, PES 69%	ZES 11%, ZES-R 14%, EES 60%, Nobori 6%	

AMC preliminary

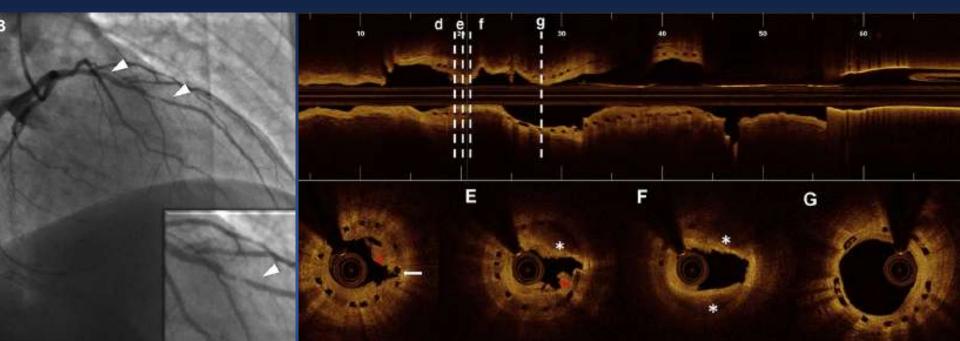
CardioVascular Research Foundation

Old vs. Newer Generation DES-ISR Propensity matching

	Old DES (n=51)	Newer DES (n=35)	р
Stent duration, days	693±447	546±339	0.087
Lipidic neointima	47 (92.2%)	30 (85.7%)	0.338
Calcific neointima	5 (9.8%)	2 (5.7%)	0.847
In-stent TCFA	18 (35.3%)	4 (11.4%)	0.013
Intimal rupture	23 (45.1%)	8 (22.9%)	0.035
Intimal rupture at MLA	17 (33.3%)	5 (14.3%)	0.047

Stent failure cohort Much longer follow-up duration

AMC preliminary



JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

Neoatherosclerosis as the Cause of Late Failure of a Bioresorbable Vascular Scaffold

Andrea Mangiameli, MD,* Yohei Ohno, MD,* Guilherme F. Attizzani, MD,*† Davide Capodanno, MD, РнD,* Corrado Tamburino, MD, РнD*‡

48-year-old man with UA, 3.0 x 28mm BVS 15 months ago

- Eliminate permanent vessel caging
- Promote late lumen enlargement
- Stabilize vulnerable plaques by providing uniform neointimal layers

BVS have not eliminated the early- and mid-term presence of polymer and anti-proliferative drugs with a pro-inflammatory action

Mangiameli et al. JACC Cardiovasc Interv 2015

Summary

 Intravascular imaging is useful for assessing neointimal characteristics

 Neoatherosclerosis is a common mechanism of very late stent failure

Newer generation DES and even BVS failed to fully protect the vessel from neoatherosclerosis

Further studies are necessary to clarify the incidence and long-term clinical implication of neoatherosclerosis after DES/ BVS implantation

