Main Session VIII - Review year and future 3
Master's rules: practical tips and tricks to enhance PCI outcomes in complex coronary disease

Antonio Colombo
Centro Cuore Columbus and
S. Raffaele Scientific Institute, Milan, Italy

```
1993: the bigger the better!
```


RE Kuntz and DS Baim Circulation 1993;88;1310-1323

Plot of a geometric model relating acute postprocedure luminal diameter to the late luminal diameter

1995

Intracoronary Stenting Without Anticoagulation Accomplished With Intravascular Ultrasound Guidance

Antonio Colombo, MD; Patrick Hall, MD; Shigeru Nakamura, MD; Yaron Almagor, MD; Luigi Maiello, MD; Giovanni Martini, CCP; Antonio Gaglione, MD; Steven L. Goldberg, MD; Jonathan M. Tobis, MD

359 patients unselected pts. Conly exclusion ST elevation AMI) on Aspirin + Iiclopidine + IVUS evaluation
\Rightarrow Aspirin + Ticlopidine
\Rightarrow Average balloon pressure
14.9 atm
\Rightarrow
Balloon artery ratio
1.17

Thrombosis
0.9%

Almost 20 years later we are still de bating!

IVUS guidance may have less impact on events following BMS implantation compared to DES implantation.
The issue could be: reduction in Late and Very Late Stent Thrombosis

IVUS does not work by intention to treat

The fact the operator opened the IVUS catheter, inserted the catheter in the coronary does not mean the procedure is IVZlS guided

It is important to know:

- The IVUlS interpretetion
- Which action was taken
-The result achieved

Deploy Stent and Perform I VUS

Me dia-Me dia:
3.5 mm

Postdilate with 3.25 .
3.0 mm

Those criteria have been validated in the $\mathcal{A V I O}$ trial which randomized 284 pts. to IVGS guided DES implantation versus Angio guided.

The IVUS guided group fiad a final $\mathcal{M L D}$ in the stented lesions which was 0.20 mm larger than the Angio group

There was no statistical or numerical difference in adverse events between the 2 groups

Prox IVUS Taxus 4.0×32 20atm

Mid I VUlS
Taxus $3.0 \times 3218 \mathrm{~atm}$

Baseline

Dist I VUlS
Taxus $2.75 \times 3214 \mathrm{~atm}$

Final Result

PreMediatomedia $2.6 \times 2.8 \mathrm{~mm}$	Fina Sprinter 3.0×12 $25 a t m$
Dist	
	$C S A=3.8 \mathrm{~mm}^{2}$

Vessel preparation

Angiosculpt

Rotablation

Compliant/Semi-Compliant

Dilatation force not uniform, more vessel dilatation where not needed

Non-Compliant

Dilatation force more uniform and where it is needed

Distal Left Main Bifurcation in

 a Patient with Low $\mathcal{E F}$
History

- 87 Y old Gentleman High 160 cm -Weight 59 Kg
- Effort Angina Class III
- Hypertension
- No Diabetes
- Creatinine $2.0 \mathrm{mg} \%$-ml
- No prior PCI
- No associated medical condition
- Positive Exsercise Test at Low Level
- $\mathcal{E F} 25 \%$
- MitralInsufficent grade III
- 45 mmHg Pulmonary Pressure

Distal Left Main Bifurcation in a Patient with Low $\mathcal{E F}$

Baseline -I $\mathcal{A} \mathcal{B} P$ in place

Distal Left Main Bifurcation in a Patient with Low $\mathcal{E F}$

Rotablator - 1.5 mm BURR

$\mathcal{F o l f o w i n g ~ R o t a b l a t o r ~ t o w a r d ~ L C X ~}$

Distal Left Main Bifurcation in

 a Patient with Low $\mathcal{E F}$

Following Rotablator toward LAD

Distal Left Main Bifurcation in a Patient with Low $\mathcal{E F}$

$3.0 \mathrm{~mm} \mathfrak{N} \subset \mathcal{B a l l o o n}$ to $\mathcal{L A D}$

$2.5 \mathrm{~mm} \operatorname{NCC}$ Balloon to LCX

Distal Left Main Bifurcation in a Patient with Low $\mathcal{E F}$

Tissing Balloon
$3.0 \mathrm{~mm} \mathfrak{N C}$ Balloon to $\mathcal{L A D}$ $2.5 \mathrm{~mm} \mathcal{N} C \mathcal{B a l l o o n}$ to $\mathcal{L C X}$

Stenting $\mathcal{L A D}$

$$
3.0 \cdot 14 \mathrm{~mm}
$$

Post Dilatation Prox - $\mathcal{A D} \mathcal{S}$ tent with
3.0 mm N(C Balloon

Distal Left Main Bifurcation in a Patient with Low $\mathcal{E F}$

Struts open toward LCX

Distal Left Main Bifurcation in

 a Patient with Low $\mathcal{E F}$
2.5-8 mm to LCX

With $\mathcal{T A P} \mathcal{T e}$ chnique

CUORE COLUMBUS s.rI

Distal Left Main Bifurcation in

 a Patient with Low $\mathcal{E F}$Stenting LCX
Kissing Balloon

Distal Left Main Bifurcation in a Patient with Low $\mathcal{E F}$

Final Re sult

CENTRO
Distal Left Main Bifurcation in a Patient with Low $\mathcal{E F}$

Bifurcation and Multivessel Disease

Acute Branch Occlusion and STAR reopening

Baseline

$27258 / 09 C$ CC

Bifurcation and Multivessel Disease Acute Branch Occlusion and STAR reopening

Crossing CTO with 1.5 mm OTW \& mm long
$27258 / 09 \mathrm{C}$ and Miracle 3

$2.5 \times 30 \mathrm{~mm} 10$ Atm Predilatation

Bifurcation and Multivessel Disease Acute $\mathcal{B r a n c h}$ Occlusion and STAR reopening

Implantation of Resolute $2.75 \times 30 \mathrm{~mm}$

Post-dilatation Quantum 3.0 mm

Acute Branch Occlusion and STAR reopening

OTW 1.5才8mm with Conquest

1.5 mm Balloon dilatation after changing Conquest with Balance Universal

$$
\begin{array}{r}
27258 / 09 \mathrm{C} \\
C C
\end{array}
$$

After pre-dilatation

Bifurcation and Multivessel Disease Acute Branch Occlusion and STAR reopening

Bifurcation and Multivessel Disease

 Acute Branch Occlusion and STAR reopening2.0 mm balloon low- pressure distal inflation

Following Stent and distal

Resolute $2.75 \times 30 \mathrm{~mm}$

Bifurcation and Multivessel Disease Acute Branch Occlusion and STAR reopening

Post-dilatation
Quantum 3.0 28Atm

Rissing Maverick $2.5 \times 30 \mathrm{~mm}$ $10 \mathfrak{A t m}$
$27258 / 09 C$

Bifurcation and Multivessel Disease Acute Branch Occlusion and STAR reopening

After Kissing
$27258 / 09 C$
CC

Bifurcation and Multivessel Disease

 Acute Branch Occlusion and STAR reopening

Quantum 3.5x15mm 15 Atm

Bifurcation and Multivessel Disease

Acute Branch Occlusion and STAR reopening

RCA Total Occlusion

Bifurcation and Multivessel Disease

Acute Branch Occlusion and STAR reopening

$1.5 x 8 \mathrm{~mm}$ OTW Galloon and Universal wire

Bifurcation and Multivessel Disease

Acute Branch Occlusion and STAR reopening

Hydropfilic wire extraluminal and possibly in pericardial space
$27258 / 09 C$

Following removal of the wire and checking extravasation

Following removal of the wire and checking extravasation

Bifurcation and Multivessel Disease

 Acute Branch Occlusion and STAR reopening

Contra-lateral injection Finecross support catheter and Intermediate wire

Bifurcation and Multivessel Disease

 Acute Branch Occlusion and STAR reopeningFinal crossing with Intermediate wire

Bifurcation and Multivessel Disease

 Acute Branch Occlusion and STAR reopening

After stenting RCA prox and

CENTRO
CUORE COLUMBUS s.r.1
Bifurcation and Multivessel Disease Acute $\mathcal{B r a n c h}$ Occlusion and STAR reopening

Resolute $2.75 \times 30 \mathrm{~mm}$

Acute Branch Occlusion and STAR reopening

Resolute $4.0 \times 30 \mathrm{~mm}$

Kits sing $\mathfrak{B a l l o o n}$

Impossibility to cross in the true lumen $S \mathcal{T A R}$ on both branches distal $O \mathcal{M}$

Bifurcation and Multivessel Disease

 Acute Branch Occlusion and STAR reopening

Bifurcation and Multivessel Disease

 Acute Branch Occlusion and STAR reopening

Final result on distal $O \mathcal{M}$ with clear STAR dissection on both distal branches

