Severe AS with severe CAC

Cheol Hyun Lee, MD

Keimyung University Dongsan Hospital

Case 1

- F/81, 149 cm, 49 kg, BMI 22.2
- Chief complaints
 - DOE (NYHA IV) : 10-15m walk

Medical history

- Severe AS (EF 54->28%, Valve area 0.47cm2, PG 64/36)
- CABG (LIMA to LAD, tRA-OM3-RCA)
- NSCLC s/p Keytruda (Partial Response)
- Atrial flutter (CHA2DS2-VASc 4, HAS-BLED 3)

AFL HR 96

ECG

Echocardiography

LV EF 28% global wall motion

CT analysis

Saphien 3 23mm

CT analysis

LIMA to LAD occlusion

Coronary Angiography

Significant stenosis at LAD with heavy calcification, LIMA to LAD occlusion

Coronary Angiography

LIMA to LAD occlusion, but t-RA-OM3-RCA graft patent

Severe AS with LV dysfunction? Low PG/Low EF?

Significant LAD disease with Ischemic cardiomyopathy? Asymptomatic Severe AS?

Low dose dobutamine make severe angina -> Failed Stress Echo test

Echocardiography

17.05

19.01

19.04

Sequential decrease LAD wall motion

Pre-PCI

Pre-intervention setting with mechanical ventilator and ECMO using sky O2 line

ECMO wire insertion

Left A: intervention, Rt A, Lt V: ECMO Using Cook Stiff 035 wire

The magnified angiography is divided into 1st curve, 2nd curve, 3rd curve and Trifurcation.

The 1st and 2nd curves were overcome with Fielder XT-R wire and caravel microcatheter

The 1st and 2nd curves were overcome with Fielder XT-R wire and caravel microcatheter

3rd curve and trifurcation lesions were selected using Sion Black wire.

Since the microcatheter could not cross the 2nd curve, 1.0 and 2.0mm balloon could be used repeatedly, penertration and curve stretching, and the device could be sent over the 2nd curve with guidezillar.

Even after POBA, the device did not enter smoothly in the 2nd and 3rd curve calcium lesion, so we inserted microcatheter into the 3rd curve entrance to change the rota wire.

the rota wiring was passed lesion, In that time, V/S was unstable and we inserted ECMO.

We start rotational artherectomy using a 1.25 and 1.5 mm burr with hemodynamic support.

After rotablation, high pressure balloon was performed with 2.75mm NC balloon.

IVUS Findings LAD

A. Prox. reference

B. MLA

C. Dist. reference

LA 2.05mm² Min D. 1.47mm / Max D. 1.80mm VA 11.54mm² Min D. 3.58mm / Max D. 4.05mm Plaque 82.2% of vessel

Lumen Mean D. 2.20mm Min D. 1.85mm / Max D. 2.62mm Vessel Mean D. 3.22mm Min D. 2.80mm / Max D. 3.71mm

We performed stent implantation with Synergy 2.75x38 + 3.0x32mm and additionally high pressure balloon up to 28atm with 2.75mm NC balloon.

Final OCT Findings LAD

A. Prox. Stent edge

B. MSA

C. Dist. Stent edge

Stent Mean D. 2.93mm Min D. 2.75mm / Max D. 3.10mm Vessel Mean D. 5.19mm Min D. 4.93mm / Max D. 5.40mm SA 4.07mm² Min D. 2.14mm / Max D. 2.51mm VA 10.85mm² Min D. 3.64mm / Max D. 3.84mm Plaque 62.5% of vessel

Stent Mean D. 2.39mm Min D. 1.90mm / Max D. 2.94mm Vessel Mean D. 3.68mm Min D. 3.54mm / Max D. 3.79mm

Stent length 60.09mm (synergy 2.75×38, 3.0×32)

There are some suboptimal lesion on IVUS, but the procedure was terminated with a successful result on angiography.

Bronchoscopy (post PCI day #4)

LUL bronchus cancer bleeding

After Procedure

- ECMO : 5 days
- D/C cardioversion and amiodarone (post PCI day #2)
- Ventilator : 11 days (d/t bleeding in the intubation tube)

- Pre PCI medication : NOAC
- Post PCI medication : Aspirin, Plavix, IV heparin (ECMO)
- Medication : loading DAPT (3 day)

hold DAPT d/t bleeding (3 day)

SAPT (plavix 3 day)

SAPT + low dose NOAC (until discharge)

Post-PCI Echocardiography

LV EF 28 -> 60%, PASP 49 -> 28mmHg AV Vmax 4.07 -> 4.12m/s

After Procedure

Last OPD f/u (post-PCI 9 months)
S) DOE: improved (10-15 min walk)
O) Echo: normal EF, AV Vmax 4.1m/s, PASP 28
A) Asymptomatic Severe AS
AFL (sinus conversion)
NSCLC (no progression during immune Tx.)
P) consider TAVR? Or regular Echo f/u with OMT?

severe AS with CAD

Conclusion

 It may be necessary to assess where culprit lesions are present in high risk patients with severe AS.

 As TAVR procedure becomes more common, accurate assessment of Severe AS and severe CAC is necessary to prevent overtreatment in high risk patients.

 As the interventional technique develops, physician's decision making also becomes more difficult.

