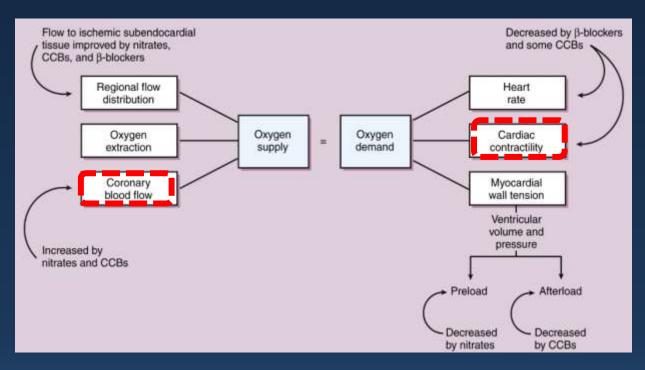


Physiologic Assessment of Coronary Artery Disease : Resting index : instantaneous wave-Free Ratio


Lim Do Hyung, RT

Cardiovascular center, Incheon St. Mary's Hospital The Catholic University of Korea

Functional measurements to assess significant coronary lesion : developed to define myocardial ischemia

Imbalance between oxygen demand and supply

Defining minimal requirement of CBF to maintain contractility is needed

Measuring required absolute coronary blood flow is impossible

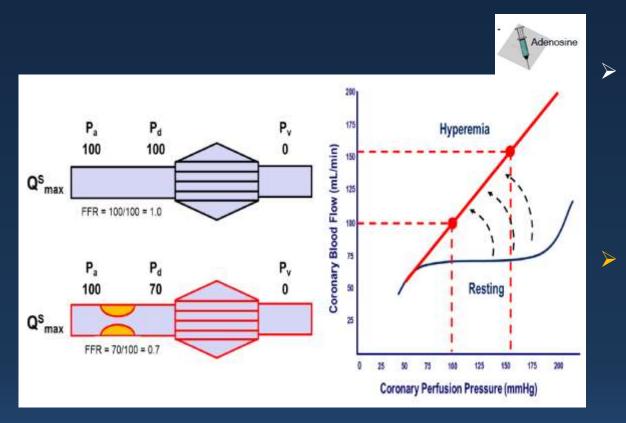
- Coronary blood flow would determine the O2 supply
- Cannot measure O2 demand : CBF alone cannot define ischemia

Braunwald

Using Pressure to Get Flow

Coronary pressure is simple to measure

P = Q X RPressure = Flow x Resistance

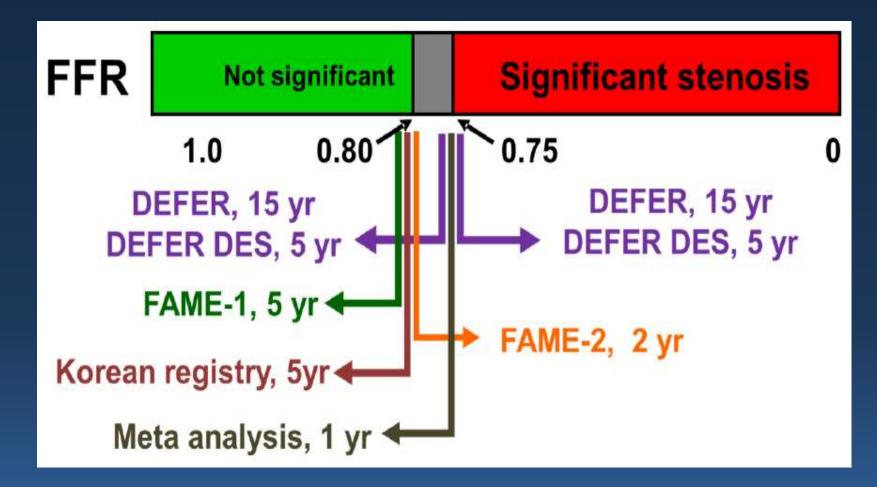

If, resistance is stable(constant)

Pressure \approx Flow

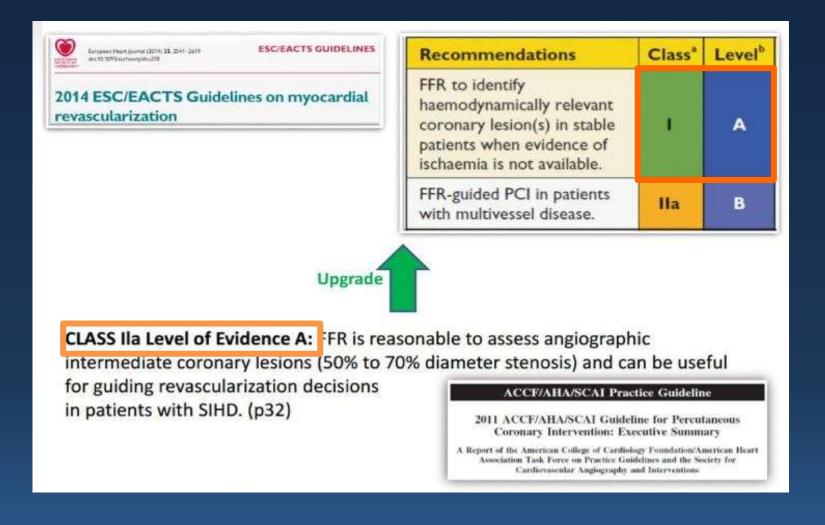
Derived from Poiseuille's Law for Fluid Dynamics

FFR : To assume functional ischemia, indirectly

We measure pressure drop between the stenosis during induced hyperemic condition


Hyperemia

Minimized microvascular resistance by Adenosine / nicorandil



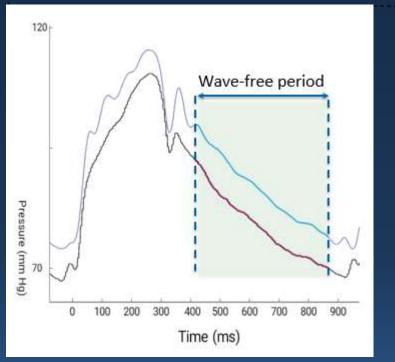
Lee JM, Koo BK, IPOP Textbook of Coronary Imaging and Physiology

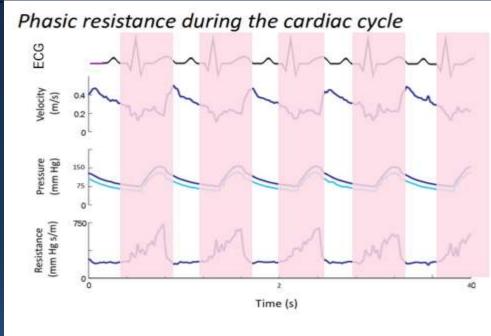
Evidences of superiority of FFR guided PCI
> compare to Angiography guided PCI

Guideline for PCI

Jose M de la Torre Hernandez, MD, PhD, FESC

Poor adoption of FFR-guided PCI

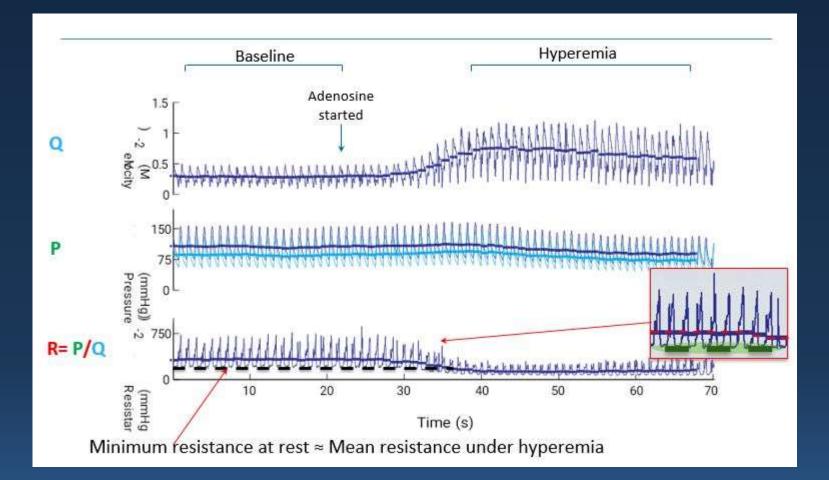

	2014 K-PCI (N = 44,967)	2009-2010 NCDR (N = 61,874)
Indications for PCI	All-comers	Intermediate stenoses
Use of FFR, n (%)	1,675 (3.72)	3,763 (6.1)
Use of IVUS, n (%)	12,846 (28.6)	12,589 (20.3)


- > 1.Interventional cardiologists still largely underestimate the advantage of physiology
- > 2.Technical steps of FFR measurement must be carried out with precision
- > 3.Substantial costs of pressure wires
- 4.Adenosine-mediated hyperemia: time-consuming, costly, alters systemic hemodynamics, side effects (AV conduction abnormalities, chest discomfort, etc.)

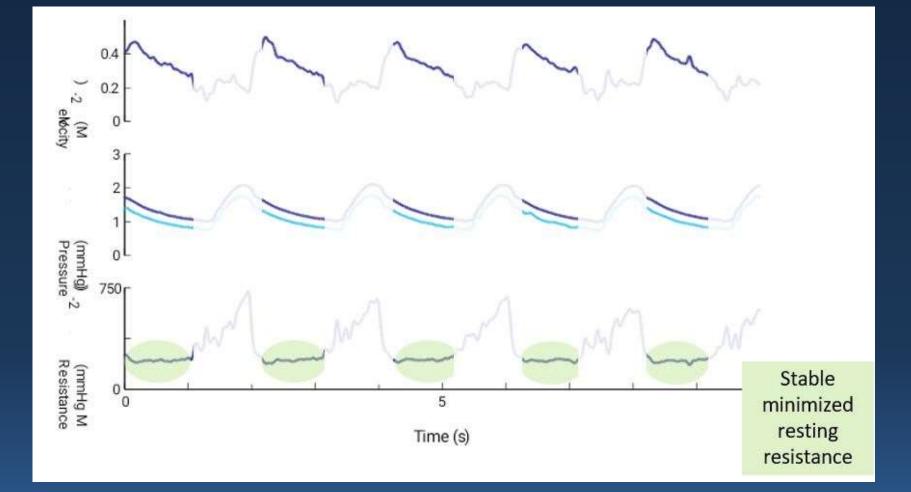
Jang JS *et al.* Korea Cir J 2017;43:328-40 Dattilo PB *et al.* J Am Coll Cardiol 2012;60:2337-9 de Waard GA *et al.* EuroIntervention 2017;13:450-8

instantaneous wave-Free Ratio (iFR)

Definition: Instantaneous pressure ratio, across a stenosis during the wave-free period, when *resistance is naturally constant* and *minimized* in the cardiac cycle

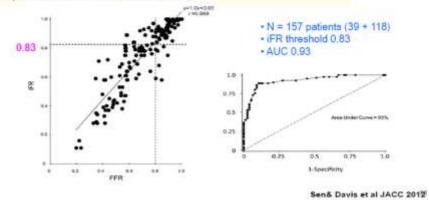


This wave-free period prevails over most 75% of the diastole and is the basis for iFR[®]- measurement.



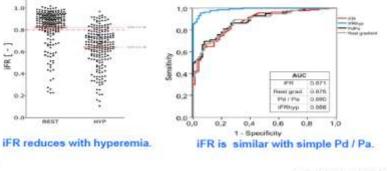
Sen S, *et al.* Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity an alysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. *J Am Coll Cardiol.* 2012 Apr 10;59(15):13 92-402.

Change in hemodynamic variables with adenosine hyperemia


Minimum resistance (mid/late diastole) used to calculate iFR

Validation of iFR

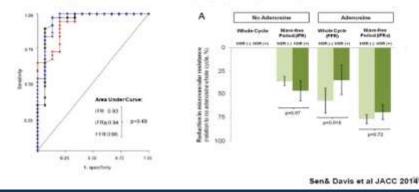
Development and Validation of a New Adenosine-Independent Index of Stenosis Severity From Coronary Wave–Intensity Analysis

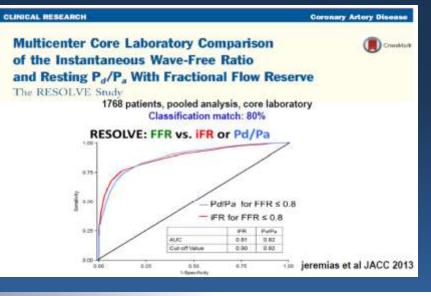

Results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) Study

VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice)

A Multicenter Study in Consecutive Patients

Prospective 206 Pts. + retrospective 500 recordingds




Nico Pijls et al JACC 2013

Diagnostic Classification of the Instantaneous Wave-Free Ratio Is Equivalent to Fractional Flow Reserve and Is Not Improved With Adenosine Administration

Results of CLARIFY (Classification Accuracy of Pressure-Only Ratios Against Indices Using Flow Study)

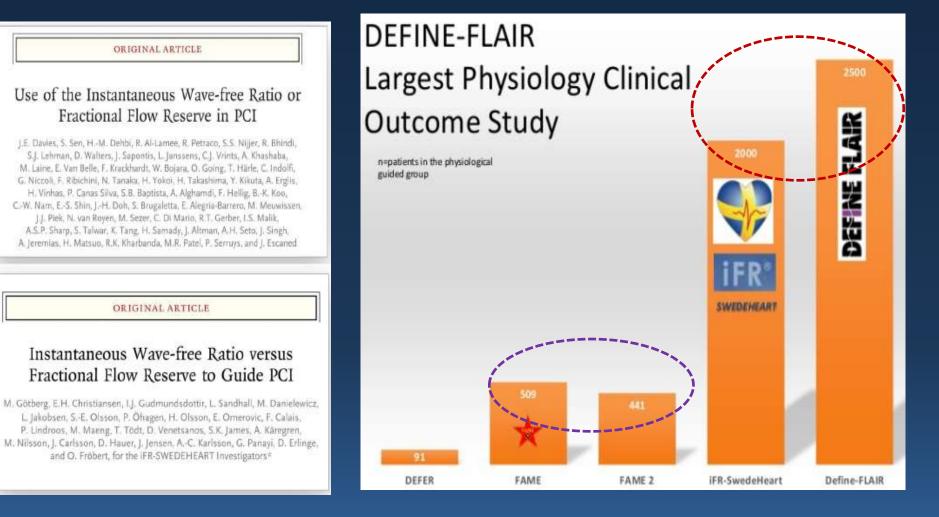
hyperemic stenosis resistance (HSR) = (Pa - Pv) / Velocity vs IFR, FFR

Compared to FFR.....

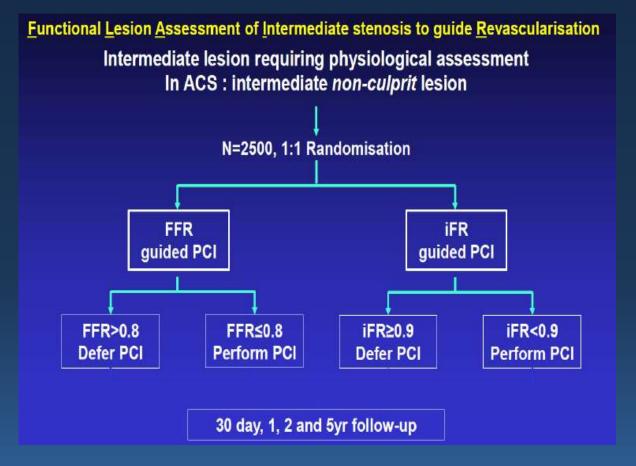
CLASS IIa Level of Evidence A: FFR is reasonable to assess angiographic intermediate coronary lesions (50% to 70% diameter stenosis) and can be useful

for guiding revascularization decisions in patients with SIHD. (p32)

ACCF/AHA/SCAI Practice Guideline

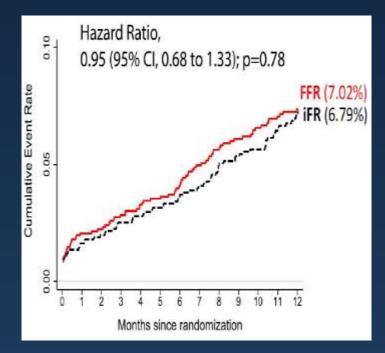

2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: Executive Summary

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions


Two Randomized Controlled Tests

• 2 RCTs made evidence of iFR based PCI vs. FFR based PCI

Designed to prove the non-inferiority of iFR® in ACS patients with intermediate non-culprit lesion

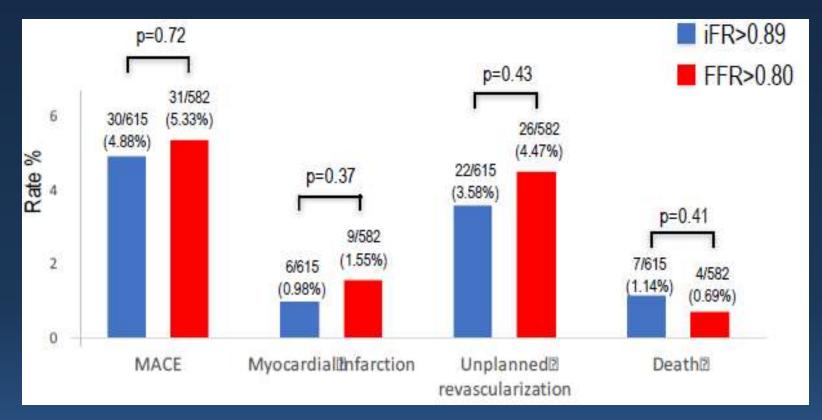

- Stable disease 81.7%, ACS 14.9%, STEMI(>24h) 3.5%
- Inclusion : 40~70% stenosis of the diameter on visual assessment
- Exclusion : patients with tandem stenosis separated more than 10mm

Primary endpoint : 1 year risk for

DEF NE FLAIR

• MACE (Death, MI, Unplanned revascularization)

Variable	iFR Group (N=1242)	FFR Group (N=1250)	P Value;
Radial-artery approach — no. of patients (%)	896 (72.1)	888 (71.0)	0.54
Procedure time — min			
Median	40.5	45.0	0.001
Interquartile range	27.0-60.0	30.0-66.0	
Hyperemic agent administered — no. of patients (% of total no. who received a hyperemic agent)			
Total	NA	1608 (100)	
Intracoronary adenosine	NA	455 (28.3)	
Intravenous adenosine	NA	950 (59.1)	
Other agent	NA	203 (12.6)	
Multivessel disease — no. of patients (%)	505 (40.7)	519 (41.5)	0.66
Type of vessel evaluated — no. (% of total vessels evaluated)‡			
Total	1575 (100)	1608 (100)	0.58
Left anterior descending artery	844 (53.6)	845 (52.5)	0.56
Left circumflex artery	323 (20.5)	333 (20.7)	0.89
Right coronary artery	374 (23.7)	393 (24.4)	0.65
Other	33 (2.1)	31 (1.9)	0.74
Unknown	1 (0.1)	6 (0.4)	0.06
Total no. of vessels evaluated or treated‡	1879	1940	0.42
No. of vessels evaluated or treated per patient;	1.51±0.76	1.55±0.80	0.42
Functionally significant lesions — no. (% of total vessels evaluated)	451 (28.6)	557 (34.6)	0.004
≥1 Functionally significant lesions present — no. of patients (%)}	426 (34.3)	486 (38.9)	0.02

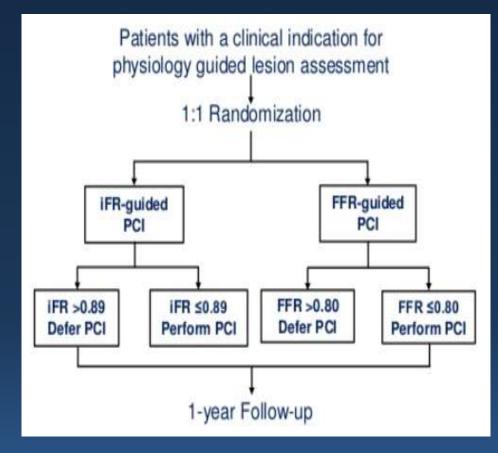


confirming the non-inferiority of iFR® towards FFR.

Functionally significant lesions: more in FFR group

In deferred population DEFINE FLAIR

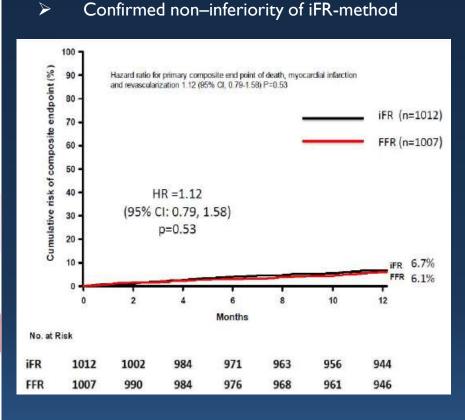
In deferred patients at 12 months



Each outcomes also showed no significant difference between iFR and FFR

iFR-SWEDEHEART also examined the non-inferiority of iFR® with similar design

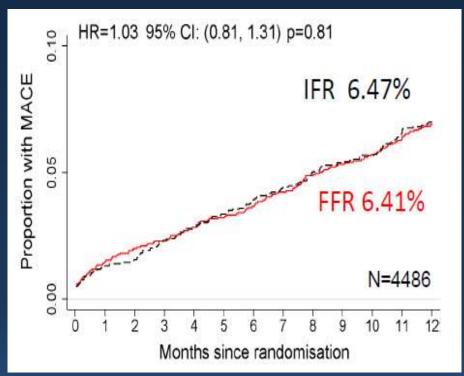
- Inclusion : SA or UA/NSTEMI,
 30-80% stenosis grade
- 2000 patients, radnomized
- I3 centers in Sweden,
 - Denmark



primary endpoint of 1 year MACE

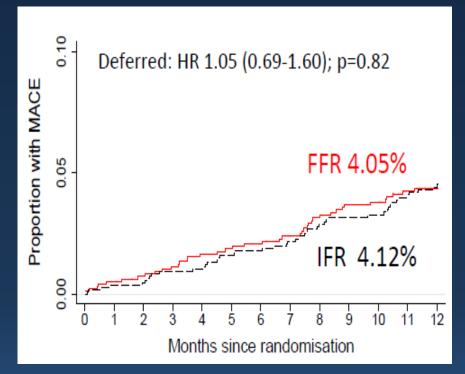
MACE (Death, MI, Unplanned revascularization)

Characteristic	iFR Group (N=1012)	FFR Group (N=1007)	P Value
Radial-artery approach — no. of patients (%)	841 (83.1)	811 (80.5)	0.13
Contrast material used per patient — ml			0.10
Median	110	115	
Interquartile range	80-155	80-160	
Procedure time — min†			0.09
Median	50.8	53.1	
Interquartile range	13.8-87.8	18.1-88.1	
Fluoroscopy time — min			0.57
Median	10.5	10.2	
Interquartile range	6.3-16.8	6,5-16.0	
Intravenous adenosine administered — no. of patients (%)	NA	695 (69.0)	
Total no. of lesions evaluated	1568	1436	
No. of lesions evaluated per patient	1.55±0.86	1.43±0.70	0.002
Hemodynamically important lesions — no. (% of total lesions evaluated):	457 (29.1)	528 (36.8)	<0.001
No. of hemodynamically important lesions per patient:	0.45±0.71	0.52±0.68	0.05
Mean IFR	0.91±0.10	NA	
Mean IFR in hemodynamically important lesions:	0.80 ± 0.13	NA	
Mean FFR	NA	0.82±0.10	
Mean FFR in hemodynamically important lesions:	NA	0.72±0.08	
Lesion complexity according to the ACC-AHA class — no./total no. of treated lesions (%)§¶			0.73
A	01/913 (0.7)	73/980 (7.4)	
B1	304/915 (33.2)	320/980 (32.7)	
B2	284/915 (31.0)	300/980 (30.6)	
c	139/915 (15.2)	165/980 (16.8)	
Missing data	127/915 (13.9)	122/980 (12.4)	


More lesions evaluated in iFR, but fewer significant lesions

A Meta-analysis of 2 RCTs

The MACE rate at 1 year


MACE in iFR and FFR guided revascularization

MACE : similar and low at 1year after decision making

'S HOSPITAL

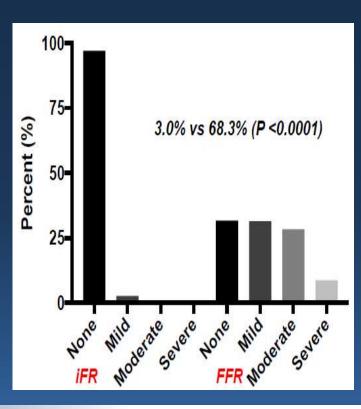
Outcomes in deferred population

MACE : similar and low rates at 1year after deferal

Javier et al. J Am Coll Cardiol Intv 2018;11:1437–49

A Meta-analysis of 2 RCTs

chest discomfort, dyspnea : Significantly more in the FFR-group

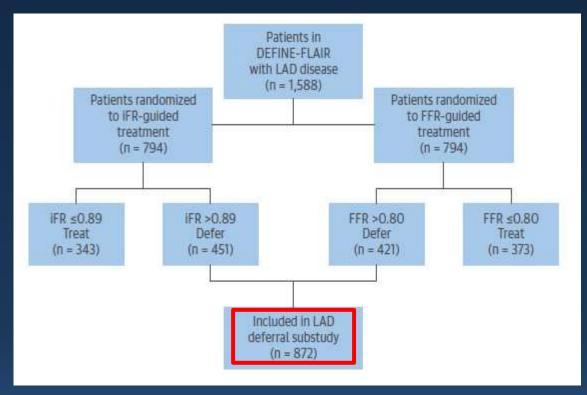

DEF NE FLAIR

Variable		iFR Group (N=1242)	FFR Group (N=1250)	P Value
Patient-reported adverse procedural symptoms or tients (%)	signs — no. of pa-	39 (3.1)	385 (30.8)	<0.001
Patient-reported dyspnea — no. of patients (%)		13 (1.0)	250 (20.0)	
Patient-reported chest pain — no. of patients (%)		19 (1.5)	90 (7.2)	
Physician-reported adverse procedural signs — no	o. of patients (%)			
Heart-rhythm disturbance		2 (0.2)	60 (4.8)	
Significant hypotension		4 (0.3)	13 (1.0)	
Vomiting or nausea		1 (0.1)	11 (0.9)	
Ventricular arrhythmia or bronchospasm¶		1 (0.1)	8 (0.6)	
Other		4 (0.3)	38 (3.0)	
SWEDE	iFR Group (N=1012)	FFR Group (N=1007)	Hazard Ratio (95% CI)	P Value
hest discomfort during procedure				<0.001†
None	982 (97.0)	319 (31.7)		
Mild	26 (2.6)	316 (31.4)		
Moderate	2 (0.2)	285 (28.3)		

2 (0.2)

87 (8.6)

mainly because adenosine was not administered



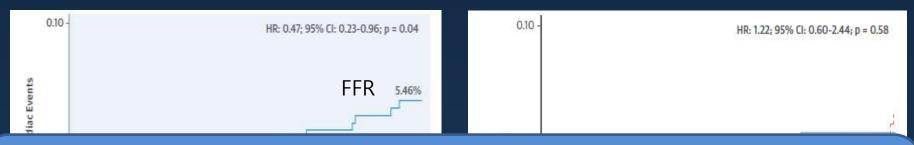
INCHEON ST. MARY'S HOSPITAL

Severe

Sub-study : safety of deferral in the LAD using FFR or iFR

DEF NE FLAIR

MACE : composite of cardiovascular death, myocardial infarction (MI), and unplanned revascularization at 1 year



Sayan Sen, Justin E. Davies et al. J Am Coll Cardiol 2019;73:444–53

Fate of Deferral of LAD by iFR or FFR

LAD-deferred patients

Non- LAD-deferred patients

iFR-guided deferral appears to be safe for patients

with LAD lesions, and may be better than FFR

	0	1	4	2	Mar	the Cir	U Dan	domina	binn	2	10	30	12						Mor	ths Sir	ice Ran	domiza	tion				
Number at i	isk						nce Rano							Number at risk													
FFR	421	403	398	395	392	391	385	370	363	360	356	345	266	FFR	327	303	301	299	299	297	290	279	276	272	270	264	212
iFR	451	430	428	424	423	417	409	394	390	385	382	373	279	IFR	343	321	314	312	312	312	305	295	291	288	285	280	225
		_	- Frac	tional l	Flow Re	serve		Ins	tantane	eous Wa	ave-Fre	e Ratio							-	— FF.	R	iF	R				

The event rate with iFR was significantly lower than with FFR in LAD deferred patients.

no difference by modality in non-lad deferred patients

The length of the procedure time

Time saving was almost 4.5 minutes each.

Significantly shorter in the iFR group

Healthcare costs and outcomes with iFR and FFR

Costs were estimated from a US healthcare payer perspective

	Mean difference IFR – FFR (95% CI)										
		Inadjusted									
Healthcare costs (2017 USS per patient) $^{\pm}$											
Index procedure: assessment	-75	(-104 to -47) **	-76	(-105 to -48) **							
Index procedure: angioplasty	-139	(-324 to 46)	-185	(-372 to 2)							
Planned CABG	-294	(-628 to 40)	-332	(-665 to 0) *							
Ambulatory care	-52	(-158 to 54)	-34	(-127 to 59)							
Hospital care	-241	(-783 to 301)	-219	(-770 to 332)							
Total cost	-801	(-1483 to -119) *	-896	(-1537 to -255) *							
Health outcomes			\cup								
Number of MACE per patient ^b	0.002	(-0.031 to 0.033)	0.004	(-0.030 to 0.035)							
QALYs per patient ^c	-0.003	(-0.017 to 0.010)	-0.003	(-0.017 to 0.010)							

- micro-costing for the index catheterization and Medicare costs for subsequent revascularizations, ambulatory care, and adverse events
- iFR-guided approach led to an economic cost saving of estimated \$896 per patient

Healthcare costs and outcomes with iFR and FFR

iFR guided approach led to a cost saving (per patient up to 1 year)

	Scandinavian costs	U.S. Costs
iFR - Cost per patient:	\$ 5 608	\$ 13 110
FFR - Cost per patient:	\$ 6 209	\$ 14 071
iFR-guided approach		A 667
Cost saving per patient:	\$ 601	\$ 961

New 2018 ESC guideline for myocardial revascularization

Revascularization was indicated in both trials if FFR was ≤0.80 or if iFR was ≤0.89

iFR $\leq 0.89 >>$ equivalent of FFR ≤ 0.80

Recommendations on functional testing and intravascular imaging for lesion assessment

Recommendations	Class ^a	Level ^b
When evidence of ischaemia is not avail- able, FFR or iwFR are recommended to assess the haemodynamic relevance of intermediate-grade stenosis. ^{15,17,18,39}	Υ.	A
FFR-guided PCI should be considered in patients with multivessel disease under- going PCI. ^{29,31}	lla	в
NUS should be considered to assess the severity of unprotected left main lesions. ^{35–37}	lla	в

FFR = fractional flow reserve; iwFR = instantaneous wave-free ratio; IVUS = intravascular ultrasound; PCI = percutaneous coronary intervention. ^aClass of recommendation. ^bL evel of evidence.

THE CATHOLIC UNIVERSITY OF KOREA

Summary

➢ iFR values showed similar accuracy compared to FFR.

➤ Through 2 RCTs,

- iFR guided intervention showed no inferior results compared with FFR guided intervention
- Less procedure time & less chest discomfort in iFR group

- Meta-analysis & pooled analysis of 2 RCTs :
 - consistent outcome of non-inferiority and no difference of cumulative MACE incidence between ifr and ffr in deferred population
 - MACE events by ACS were more influenced in FFR-guided group

Summary

In recent sub-studies

Deferred LAD

 Clinical outcomes of deferred LAD (subgroup study) : iFR group showed better prognosis than FFR group (HR 0.47, P=0.04)

Diabetes population

- iFR-SWEDEHEAR : increased event rates among diabetic patients with FFR compared to iFR
- DEFINE-FLAIR : No significant difference between iFR/FFR in MACE, More deferral occurred in iFR

Costs

 when compared to FFR, iFR was identified as more economically advantageous