### Optimal Valve Choice in Various TAVR: A Complex Equation to Select One

Alan C. Yeung, MD Li Ka Shing Professor of Medicine Medical Director, Cardiovascular Health Stanford University School of Medicine Stanford Hospital and Clinic



## How Many TAVRs Do We Need?





### How Many TAVRs Do We Need?





HERZZENTRUM LEIPZIG

# SOLVE-TAV

A 2x2 Randomized Trial of Self-Expandable vs Balloon-Expandable Valves and General vs Local Anesthesia in Patients Undergoing Transcatheter Aortic Valve Implantation

1-year Results

Hans-Josef Feistritzer, MD, PhD On behalf of the SOLVE-TAVI Investigators



### SOLVE-TAVI – 2 x 2 Factorial Design

SOLVE-TAV





### Flow Chart – Valve Strategy





#### 30-Day Primary Endpoint – Valve Strategy

All-cause mortality, stroke, moderate or severe prosthetic valve regurgitation, permanent pacemaker implantation at 30 days



SOLVE-TAV



**TCT CONNECT** 

#### 1-year Outcomes – Valve Strategy

|                                  | Evolut R  | Sapien 3  | p-value     | Cause specific<br>HR (95% CI) |  |
|----------------------------------|-----------|-----------|-------------|-------------------------------|--|
|                                  | n (%)     | n (%)     | Gray's test |                               |  |
| Composite endpoint*              | 87 (41.9) | 85 (40.4) | 0.76        | 0.95 (0.71-1.28)              |  |
| All-cause mortality              | 34 (17.6) | 33 (17.0) | 0.88        | 0.96 (0.60-1.55)              |  |
| Cardiovascular<br>mortality      | 1 (0.5)   | 4 (1.8)   | 0.19        | 3.89 (0.44-34.67)             |  |
| Stroke                           | 2 (1.0)   | 14 (6.9)  | 0.002       | 7.13 (1.62-31.32)             |  |
| Moderate/severe PVL              | 14 (7.0)  | 9 (4.5)   | 0.35        | 0.63 (0.27-1.45)              |  |
| Permanent pacemaker implantation | 54 (24.7) | 44 (20.2) | 0.25        | 0.79 (0.53-1.16)              |  |
| Time-related safety (VARC-2)     | 45 (15.6) | 64 (20.8) | 0.10        | 1.36 (0.93-1.99)              |  |

\*Composite of all-cause mortality, stroke, moderate/severe PVL, and permanent pacemaker implantation

#### 1-year Outcomes – Valve Strategy



Stroke

#### All-cause mortality



TCT CONNECT



#### Echocardiographic Findings – Valve Strategy

|                                            | Evolut R |            | Sapien 3 |            | Difference |             | o voluo |
|--------------------------------------------|----------|------------|----------|------------|------------|-------------|---------|
|                                            | Median   | IQR        | Median   | IQR        | Median     | 95%CI       | p-varue |
| AVA, cm <sup>2</sup>                       | 1.9      | (1.6, 2.3) | 1.7      | (1.5, 2.0) | -0.2       | -0.3 to 0   | 0.063   |
| AVA index, cm <sup>2</sup> /m <sup>2</sup> | 1.0      | (0.9, 1.2) | 1.1      | (0.8, 1.3) | 0          | -0.1 to 0.2 | 0.75    |
| Mean aortic valve gradient, mmHg           | 6        | (4, 8)     | 10       | (8, 12)    | 4          | 3 to 5      | <0.001  |
| Max. aortic valve gradient, mmHg           | 12       | (8, 16)    | 19       | (13, 24)   | 7          | 5 to 9      | <0.001  |



## By and Large, Equivalent!

- Similar composite end points (death, stroke, m/sPVL and pacemakers
- More strokes in BEV
- Better hemodynamics in SEV



# By and Large, Equivalent!

- Similar composition end points (death, stroke, m/sPVL and pacemakers
- More strokes in BEV
- Better hemodynamics in SEV
- Nuance driven!



# My Equations !



# My Equations !

• Sapien= 
$$(x + a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$$

• Evolut Pro = 
$$(x + b)^n = \sum_{i=0}^n \binom{n}{i} x^i b^{n-i}$$



| Anatomical                | Sapien 3      | Evolut Pro          |
|---------------------------|---------------|---------------------|
| Access Size               | 5.0mm         | 5.5mm               |
| Tortuous Iliacs           | ++            | +++                 |
| Calcified Iliacs          | Possible      | Better              |
| Annular Sizing            | 742mm2 (+4cc) | 94.2mm (perimeter)  |
| Outflow Track Ca++        | Avoid         | OK                  |
| Septal Bulge              | OK            | OK                  |
| Heavy Valve Calcification | Pre-dilate    | Pre and Post-dilate |



| Subsets                                       | Sapien 3            | Evolut Pro             |
|-----------------------------------------------|---------------------|------------------------|
| Bicuspid                                      | OK                  | OK                     |
| Low Risk                                      | OK<br>(SEV in BEV)  | OK<br>(SEV/BEV in SEV) |
| Al large component (or minimal calcification) | Avoid               | Better                 |
| Coronary Access (now or future)               | Straight Forward    | More Difficult         |
| Valve in Valve                                | Larger Valve OK     | Better hemo            |
| Small Annulus                                 | Avoid 20mm          | Better hemo            |
| Decrease LV Function                          | Rapid pacing needed | Avoid long pacing      |
| Low Flow, Low Gradient                        | OK                  | May be better          |



### REPRODUCIBILITY OF CUSP OVERLAP TECHNIQUE TO REDUCE PERMANENT PACEMAKER IMPLANTION WITH EVOLUT – THE LATIN AMERICAN EXPERIENCE

<u>Hemal Gada, MD, MBA;</u> Amit N. Vora, MD, MPH; Oscar Millan Iturbe, MD; Matias Sztejfman, MD; Lucas Gerbaudo, MD; Alejandro Alverez Iorio, MD; Rogerio Tumelero, MD; Luis Gutierrez Jaikel, MD

University of Pittsburgh Medical Center Pinnacle, Wormleysburg, PA; Hospital de Cardiologia, UMAE, Mexico City, Mexico; Sanatorio Finochietto, Buenos Aires, Argentina; Sanatorio del Salvador, Cordoba, Argentina; Hemodinamia del Sur, Bahia Blanca, Argentina; Hospital Sao Vicente de Paulo, Rio de Janeiro, Brazil; Hospital Clinica Biblica, San Jose, Costa Rica



#### **CUSP OVERLAP HIGHLIGHTS**

The cusp overlap view isolates the NCC by overlapping the RCC and LCC and is generally in the RAO imaging plane.



This view provides a good anatomical reference for deployment depth at the point of contact (NCC) as it:

- Maintains basal plane alignment of coronary cusps
- Elongates the outflow tract in a long axis view
- Reduces or removes parallax in the marker band
- Assists with depth visualization near the non-right commissure and membranous septum during deployment
- Provides a favorable root viewing angle inclusive of anatomies with root angulation approaching 70°

To have an efficient, scripted procedure, you require a high quality gated CT with contrast; free from motion artifact and slice misregistration.

#### PROCEDURAL MODIFICATIONS

1. Start Higher



2. Allow the Valve to Descend



#### 3. Control Pace to Point of No-Recapture



#### PROCEDURAL MODIFICATIONS

#### 4. Confirm Depth and Performance





#### 5. Release Slowly and Methodically



### RESULTS

- Fourteen implanting physicians from 7 different countries performed consecutive procedures on 114 patients
- Each physician implanted 22.6±10.9 THVs the previous year, with a lifetime experience of 129±110 THVs
- Of the 114 patients, 105 (92%) did not have prior PPI
- The in-hospital rate of new PPI post-THV was 5.7%
  - No use of a second valve
  - True cusp overlap achieved in 98.2% of cases
- 30-day follow-up data was only present for 85 patients in the series; none of these had a new PPI





Ochiai T et al. JACC Cardiovasc Intv 2020;13:693-705

#### Results of Modified "3 O'Clock" Flush Port Insertion Technique

- Experience thus far: 240 consecutive cases since 3/2019-7/2020
  - # of catheter rotation in descending aorta to make "Hat" marker outer curve: <10%</p>
- "Hat" at OC/CF increased from 70% to 93% (p<0.0001)</li>
- Severe coronary overlap (versus "12 o'clock"):
  - I or both coronaries reduced from to 38.0% to 20.8% (p=0.006)
  - LM from 31.4% to 14.2% (p=0.002)
  - RCA from 20.7% to 11.7% (p=0.027)
  - Both coronaries from 14% to 5.0% (p=0.004)

# **My Equations !**

Sapien= Experience with Sapien

Evolut Pro = Experience with Evolut Systems

