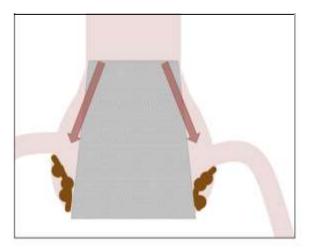
Coronary protection during TAVR: When and how?

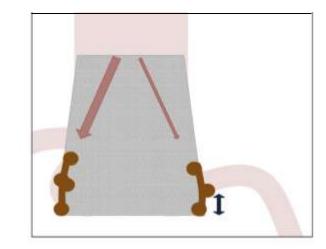
Lars Sondergaard, MD, DMSc, FESC Professor of Cardiology The Heart Center, Rigshospitalet Copenhagen University Hospital, Denmark

AP VALVES & ETHIL STRUCTURAL HEART

In selected patients:

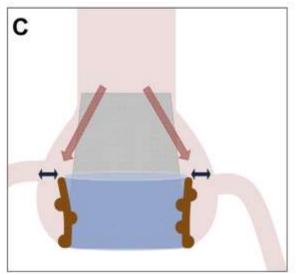

Coronary artery occlusion during TAVR is a rare but often fatal complication!

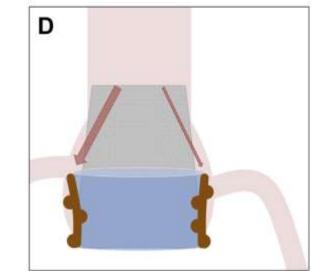
Patients at risk:


- Native aortic valve stenosis
- VinV for degenerated bioprosthetic aortic valve

Native aortic valve

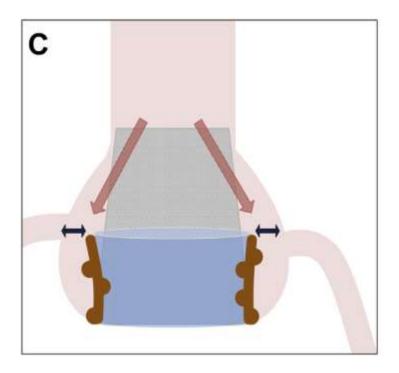
High coronary take-off Wide sinus of Valsalva High sinotubular junction Short non-calcified cusps


Low coronary take-off Shallow sinus of Valsalva Low sinotubular junction Long calcified cusps


Mercanti et al. J Am Coll Cardiol Intv 2020;13:751-61

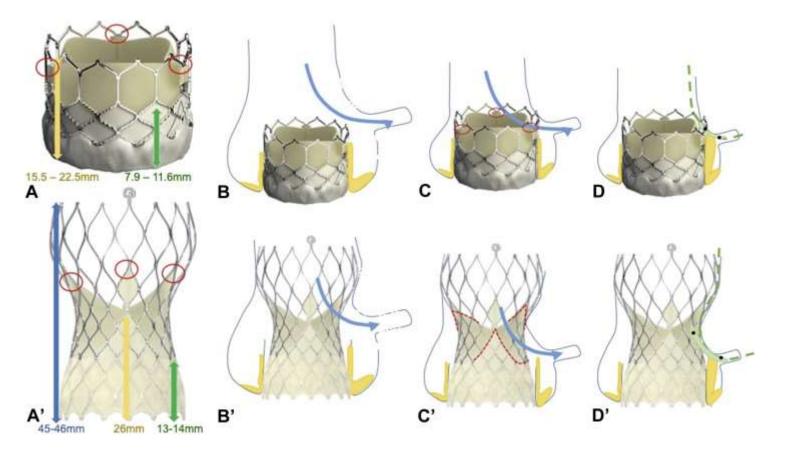
TAVR in degenerated surgical bioprostheses

High coronary take-off Wide sinus of Valsalva High sinotubular junction



Low coronary take-off Shallow sinus of Valsalva Low sinotubular junction

Mercanti et al. J Am Coll Cardiol Intv 2020;13:751-61


TAVR in degenerated surgical bioprostheses

Valve-to-Coronary (VTC):

<4 mm a risk factor!

Know your transcatheter heart valve!

Surgical bioprosthetic valve types

Stented bioprosthesis

Stentless bioprosthesis

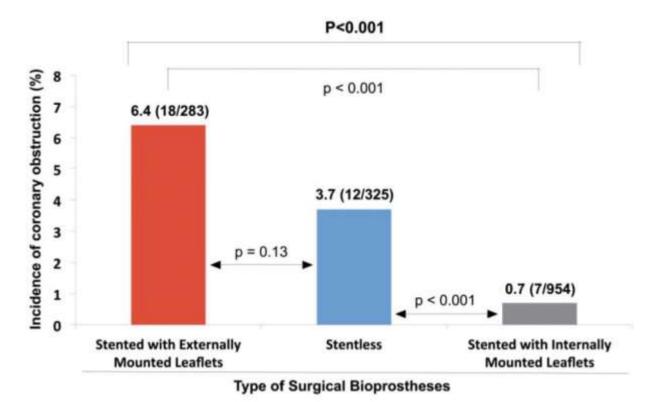
Freedom Solo

Mosaic Mitroflow & Trifecta Leaflets sutured 'outside' stent

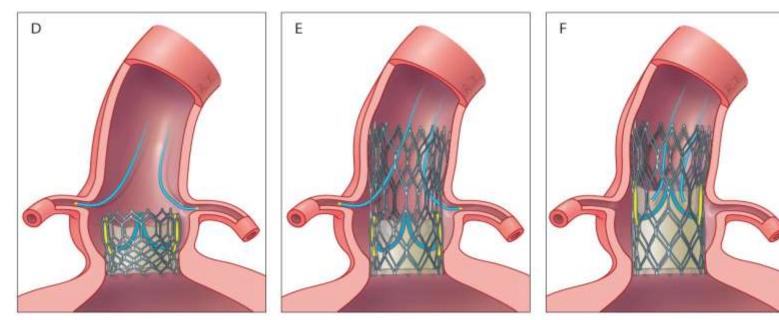
High risk of coronary occlusion

Stented bioprosthesis

Mosaic

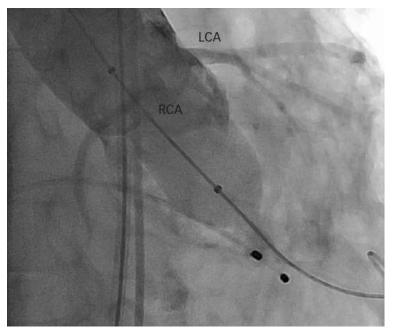

Mitroflow & Trifecta Leaflets sutured 'outside' stent

Stentless bioprosthesis


Freedom Solo

Coronary occlusion in VinV

Ribeiro et al. EHJ 2018; 39:687-95


Coronary access after TAVR-in-TAVR

Low-frame Intra-annular leaflets High-frame Intra-annular leaflets High-frame supra-annular leaflets

Sondergaard. EuroIntervention. 2018; 14:147-9

Coronary flow assessment during BAV

- Balloon with same diameter as true ID
- Simultaneously aortic root injection
- Confirm that coronary flow is unaffected

TAVR with surgical team stand-by

- Surgeon in the room
- Heart-lung machine primed
- Introducer sheath -> arterial cannula
- Venous access, stiff-guide wire in IVC

Chimney stenting

Patient at risk. Safety wire and stent Valve deployment with safety wire and stent Chimney stenting if coronary obstruction Simultaneous kissing (only if postdilatation of TAVR required) Final result

Frequency of chimney stenting

60 (0.5%) procedures in 12,800 TAVR

- 18 native aortic annulus
- 42 VinV

Mercanti et al. J Am Coll Cardiol Intv 2020;13:751-61

30-day clinical outcomes

		CAO		
	Total (N = 60)	iCAO (n = 35)	eCAO (n = 25)	p Value
Procedural death	3 (5.0)	0 (0.0)	3 (12.0)	0.07
30-day death	3 (5.0)	0 (0.0)	3 (12.0)	0.07
MI	13 (21.6)	0 (0.0)	13 (52.0)	<0.01
Cardiogenic shock	14 (23.3)	1 (2.9)	13 (52.0)	<0.01
Stroke	1 (1.7)	0 (0.0)	1 (4.0)	_
Major vascular complication	2 (3.4)	1 (2.9)	1 (4.0)	0.7
Life-threatening bleeding	1 (1.7)	0 (0.0)	1 (4.0)	-
AKI grade 3	3 (5.0)	1 (2.9)	2 (8.0)	0.4

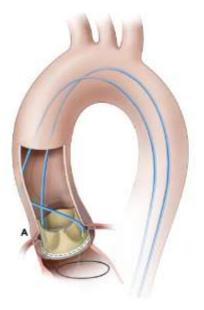
Mercanti et al. J Am Coll Cardiol Intv 2020;13:751-61

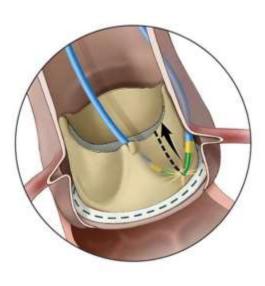
TABLE 6 Predictors of 30-Day Death, Myocardial Infarction, and Cardiogenic Shock							
	Univariate Analysis			Multivariate Analysis			
	Odds Ratio	95% CI	p Value	Odds Ratio	95% CI	p Value	
Absence of coronary protection	8.81	2.41-32.16	<0.01	7.39	1.95-27.93	<0.01	
No VIV	1.41	0.43-4.67	0.6				
Balloon-expandable THV	3.36	1.01-11.18	0.05	2.18	0.56-8.43	0.26	
SOV diameter <30 mm	1.93	0.60-6.23	0.27				
Coronary height <10 mm	2.16	0.41-11.37	0.36				
VTC ≤4 mm*	1.54	0.34-6.93	0.58				

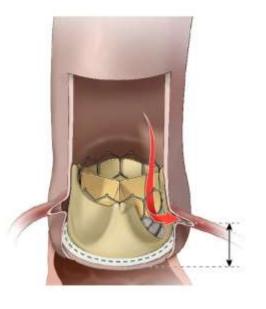
Mercanti et al. J Am Coll Cardiol Intv 2020;13:751–61

Stent failure after chimney stenting (3.5%)

Median follow-up 612 days (IQR 405-842 days)


- 1 in-stent restenosis (day 157)
- 1 possible late stent thrombosis (day 374)


BASILICA - laceration of cusp


Leaflet wire transversal and snaring

Leaflet slicing

Preserved coronary flow

Anatomically considerations for BASILICA

Favorable for BASILICA	Unfavorable for BASILICA
Typical calcium pattern which spares the nadir of the leaflet	Confluent calcium at the leaflet nadir
	Bulky calcium mass on the leaflet
Commissures aligned with native commissures	Bioprosthetic valve post in-front of coronary artery ostium
Femoral access for BASILICA catheters preferred for ergonomics	Nonfemoral access (femoral artery or transcaval) for double leaflet BASILICA
Single leaflet BASILICA	Double BASILICA not recommended for new operators in
Risk from sinus sequestration	their first 2–3 cases

Clinical outcomes with BASILICA

Native aortic valve: 13 (43%), surgical bioprosthesis 17 (57%)

Clinical outcomes	At 30 days (n=30)	At 1 y (n=30)
All death	1 (3.3%)	3 (10%)
Cardiovascular	1 (3.3%)	2 (6.7%)
Noncardiovascular	0 (0%)	1 (3.3%)
All stroke	3 (10%)	3 (10%)
Disabling	1 (3.3%)	1 (3.3%)
Nondisabling	2 (6.7%)	2 (6.7%)
Coronary artery obstruction	0 (0%)	0 (0%)

Khan et al. Circ Interv 2021

Summary

- Coronary occlusion is rare in native aortic annuli, but a risk during VinV procedures
- Pre-procedural CT may identify patients at risk
- Chimney stenting relative simple and safe, but concerns regarding re-access and stent failure
- BASILICA more technical challenging and may fail

Coronary occlusion during TAVR: If you think about it, protect it!