Bioprosthetic Valve Fracture for Optimization of ViV TAVR: When, Why, and How?

David J. Cohen, M.D., M.Sc.

Director of Clinical and Outcomes Research Cardiovascular Research Foundation, New York, NY

> Director of Academic Affairs St. Francis Hospital, Roslyn NY

Disclosures

Grant Support/Drugs

– Daiichi-Sankyo

Grant Support/Devices

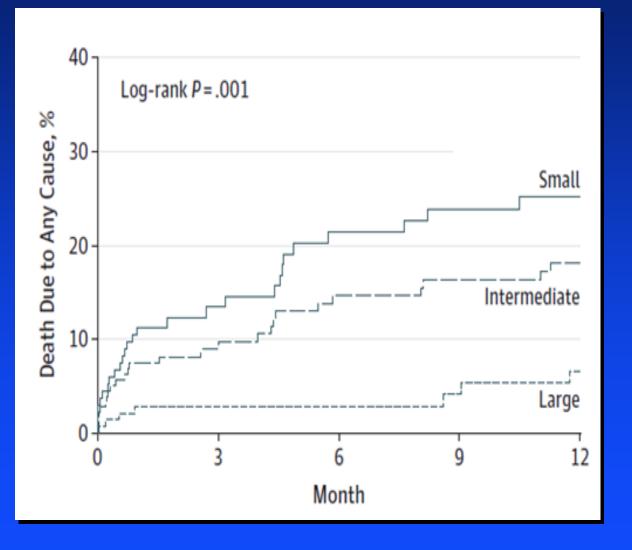
- Edwards Lifesciences
- Medtronic
- Corvia
- I-Rhythm

Consulting/Advisory Boards

- Medtronic
- Boston Scientific
- Corvia

- MyoKardia/BMS

- Abbott Vascular
- Boston Scientific
- Phillips
- Brain-Q


- Edwards Lifesciences
- Abbott Vascular
- Impulse Dynamics

Valve-in-Valve TAVR

- VIV TAVR is an effective alternative to redo surgery in high or intermediate risk patients with failing tissue valves.
- However, VIV TAVR can be problematic with small surgical bioprostheses because of further reduction in the effective orifice leading to patentprosthesis mismatch and high residual gradients.

Impact of Surgical Valve Size on 1-Year Mortality

VIVID Registry

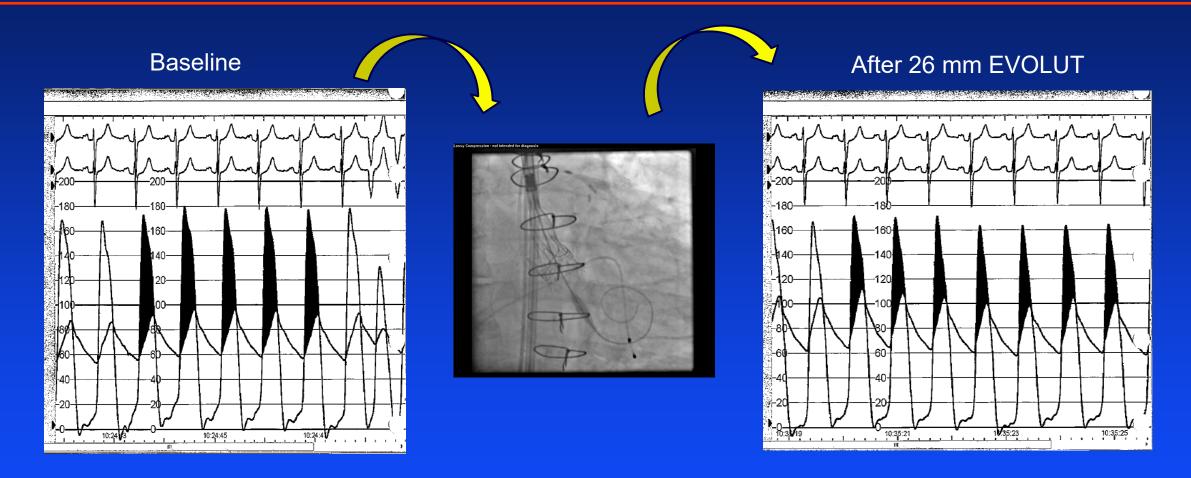
- 459 pts with failed surgical bioprostheses treated with ViV TAVR (59% balloon expandable, 41% self-expanding)
- Patients stratified based on size of original surgical valve
 - Small ≤ 21 (n=133)
 - Medium 22-24 (n=176)
 - Large ≥ 25 (n=139)
- Small surgical valve independently associated with 1-year mortality (HR 2.04, p=0.02) → possibly due to patient-prosthesis mismatch

Bioprosthetic Valve Fracture

- Basic technique and hemodynamic benefits
- Advanced technical considerations
 - Management of valves that can't be fractured
 - Balloon and valve sizing
 - Timing of BVF
- When not to fracture

Patient P.M.

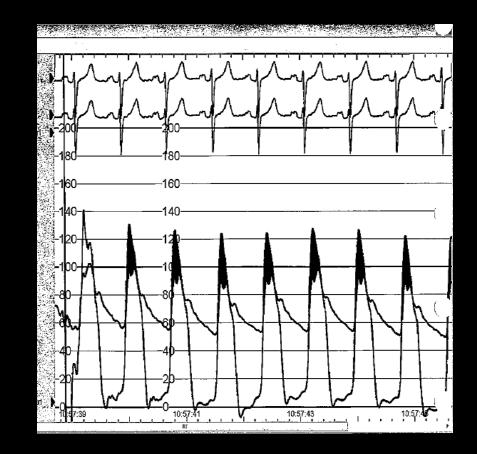
- 71 y.o. man with bioprosthetic valve degeneration
- Underwent AVR/CABG x 3 in 2007 (19 mm Magna)
- Did well until late 2015 when he began to notice increasing DOE and fatigue
- <u>Echo</u>: normal LV and RV, severe bioprosthetic AS, Mean gradient=60 mmHg
- High risk for repeat SAVR due to patent grafts and proximity of RV to sternum→ ViV TAVR



19 mm Magna True ID = 17 mm

VIV App recommends 23 mm EVOLUT

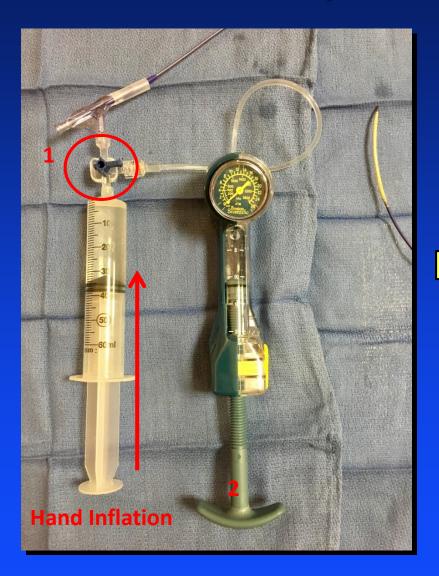
Planned for 26 mm EVOLUT with BVF given small surgical valve size

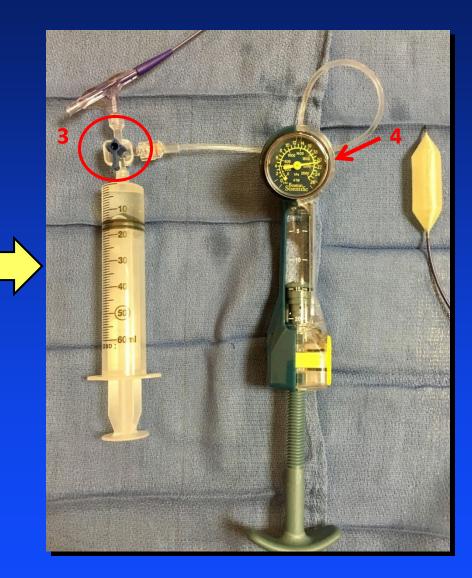

Hemodynamics before and after ViV TAVR

Mean gradient = 63 mmHg AVA 0.8 cm2 Mean gradient = 44 mmHg AVA 1.0 cm2

BVF with 20 mm True Balloon (18 atm)

Mean gradient = 18 mmHg AVA 1.9 cm2


Here's what you'll need...



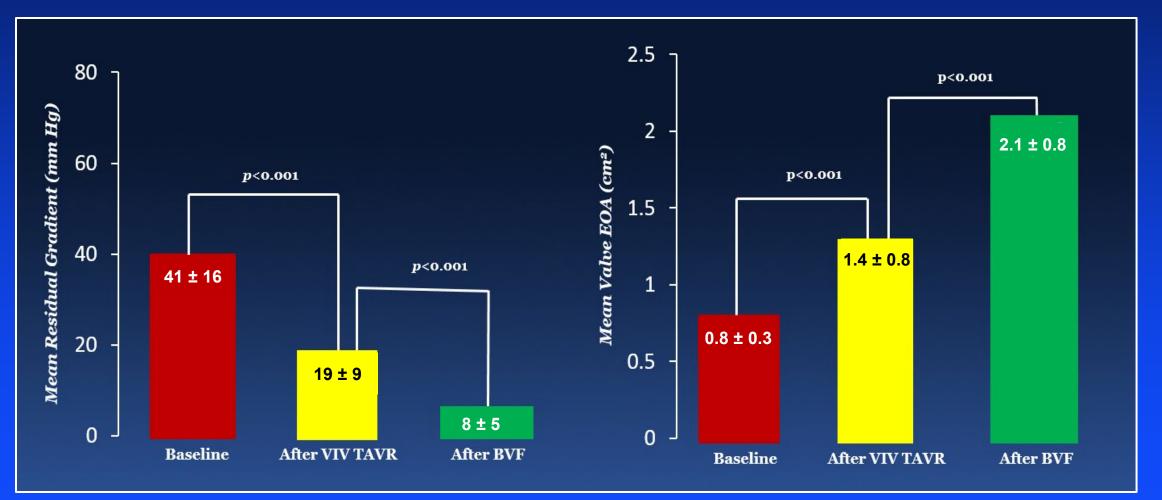
- 1 True Dilatation, ATLAS, or ATLAS-GOLD Balloon (Bard)→ Kevlar wrapped
- 1 60 cc luer lock syringe filled with dilute contrast
- 1 PTCA indeflator
- 1 high-pressure stopcock

* <u>Disclaimer</u>: This is 100% off-label use and may require exceeding balloon RBP considerably

And here's the set-up...

How Surgical Valves Fracture

23 mm EVOLUT in 21 mm Magna Valve



Single Fracture Point

Sewing Ring Otherwise Intact

Hemodynamic Effects of BVF

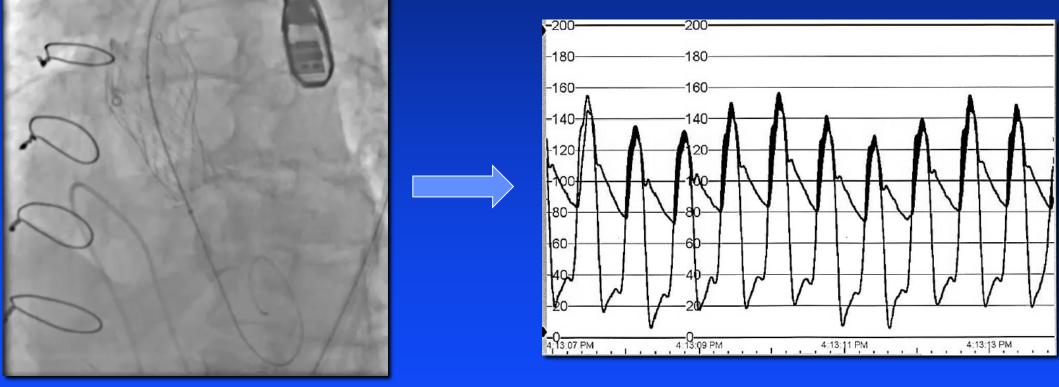
66 Patients undergoing VIV TAVR followed by BVF

Allen KA, et al. JTCVS 2019

Not All Valves Can Be Fractured

Chhatrwialla AK, et al. Circ Cardiovasc Interv. 2018

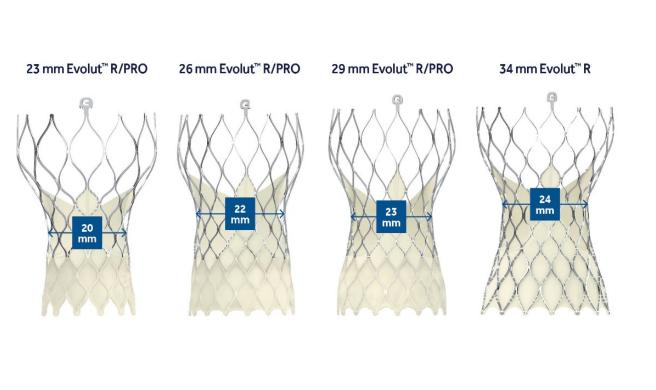
Not All Valves Can Be Fractured


Valves that can be fractured	Valves that can be "remodeled"
Biocor Epic	C-E Standard
Magna/Magna Ease	C-E SAV
Mitroflow	Perimount (older generation)
Mosaic	Trifecta
Perimount (newer generation, perforated ribbon)	
Inspiris	

Not All Valves Can Be Fractured

Valves that can be fractured	Valves that can be "remodeled"	Neither
Biocor Epic	C-E Standard	Avalus
Magna/Magna Ease	C-E SAV	Hancock II
Mitroflow	Perimount (older generation)	
Mosaic	Trifecta	
Perimount (newer generation, perforated ribbon)		
Inspiris		

Bioprosthetic Valve Remodeling (BVR)


Prior 21 mm Trifecta (TRUE ID 19mm); VIV TAVR performed with 23 mm Evolut R Mean gradient 29 mmHg, AVA 1.0 cm² after VIV TAVR → BVR

22 mm True Balloon (10 atm)

Mean gradient = 13 mmHgAVA = 1.4 cm^2

Balloon Position (and Sizing) for BVR vs. BVF

Maximum Recommended Balloon Size

<u>BVF</u>

- Constraint at valve ring → keep balloon low (ventricular) to fracture ring
- Can oversize if necessary

<u>BVR</u>

- Constraint at valve frame → balloon higher to expand frame → risk of damage to THV leaflets
- Avoid oversizing

Is it better to perform BVF before or after ViV TAVR?

BVF First

Pros

 No high pressure inflation in the new THV→? possible accelerated degeneration

<u>Cons</u>

 Risk for leaflet embolization or acute severe AI with hemodynamic compromise

BVF Second

<u>Pros</u>

- Can assess results before deciding to perform BVF
- High pressure inflation ensures optimal THV expansion

<u>Cons</u>

 High-pressure inflation could lead to acute or subacute injury to the THV

When not to Fracture

Surgical valves that cannot be fractured/remodeled
— Hancock II, Avalus

- Concern for coronary artery occlusion
 - Assess virtual THV to coronary distance
 - Consider coronary protection or BASILICA if predicted valve-to-coronary distance (after BVF) < 3mm
- Small STJ or LVOT
 - Ensure that the anatomy can accommodate the balloon used to perform BVF
 - Assess calcium burden
- Prior root enlargement or replacement
 - High risk of root rupture

Summary: BVF for ViV TAVR

- For patients with small bioprosthetic valves who are high risk for re-do AVR, BVF/BVR may offer a "solution" to high residual gradients after ViV implantation
- Most contemporary surgical valves can be fractured (or at least remodeled)
- Clinical experience to date suggests the procedure is generally safe (although not entirely risk-free)
- Unresolved questions
 - Timing of BVF (pre vs. post-TAVR) → impact on safety and long-term THV durability
 - Should all ViV procedures undergo BVF (even with a low gradient) to allow for better TAVR valve geometry and function