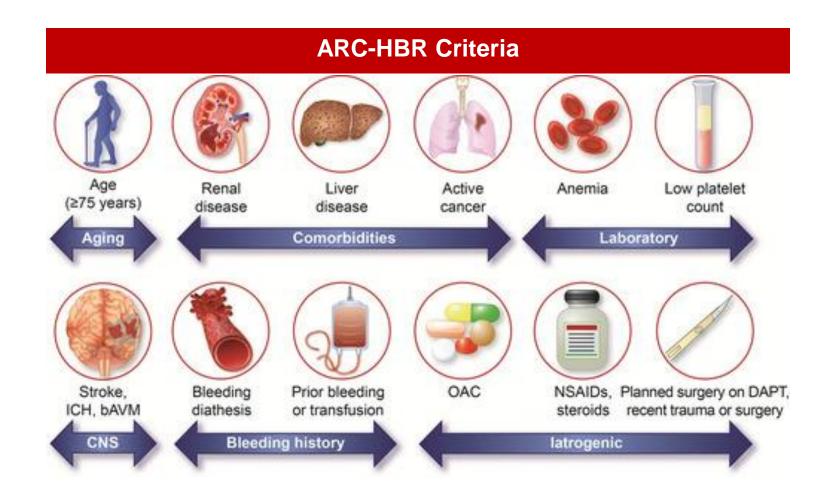
Optimal DAPT Duration for PCI Patients at High Beeding Risk

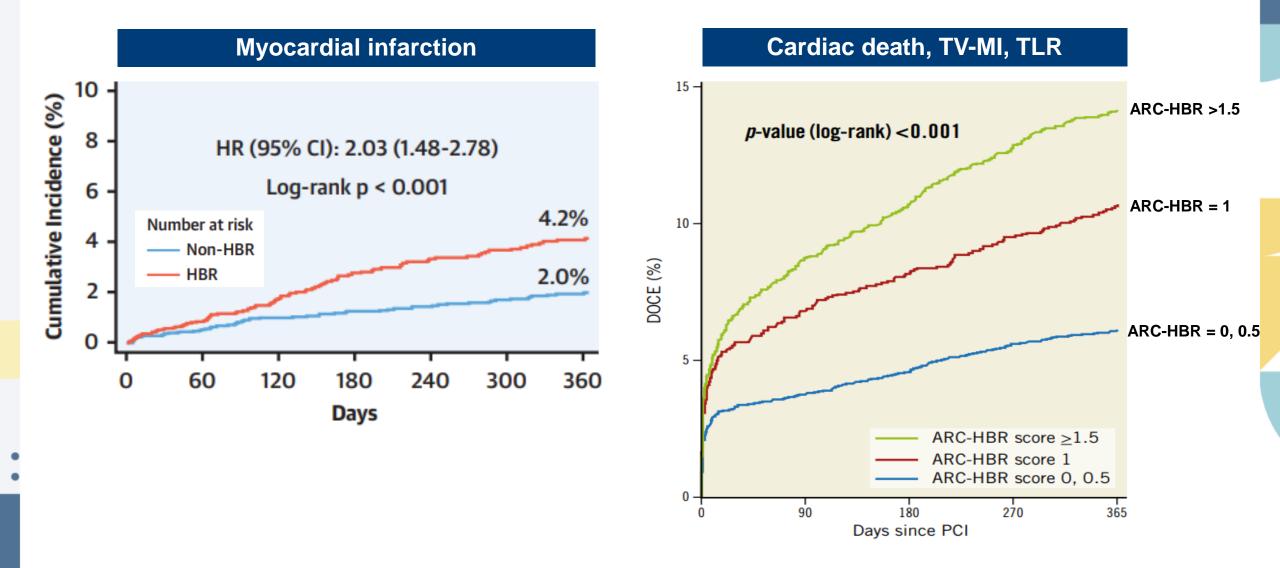
Roxana Mehran, MD, FACC, FAHA, FESC, MSCAI

Mount Sinai Professor Of Cardiovascular Clinical Research and Outcomes, Professor of Medicine (Cardiology), and Population Health Science and Policy, Director of Interventional Cardiovascular Research and Clinical Trials, Icahn School of Medicine at Mount Sinai, New York, NY, USA



Roxana.Mehran@mountsinai.org

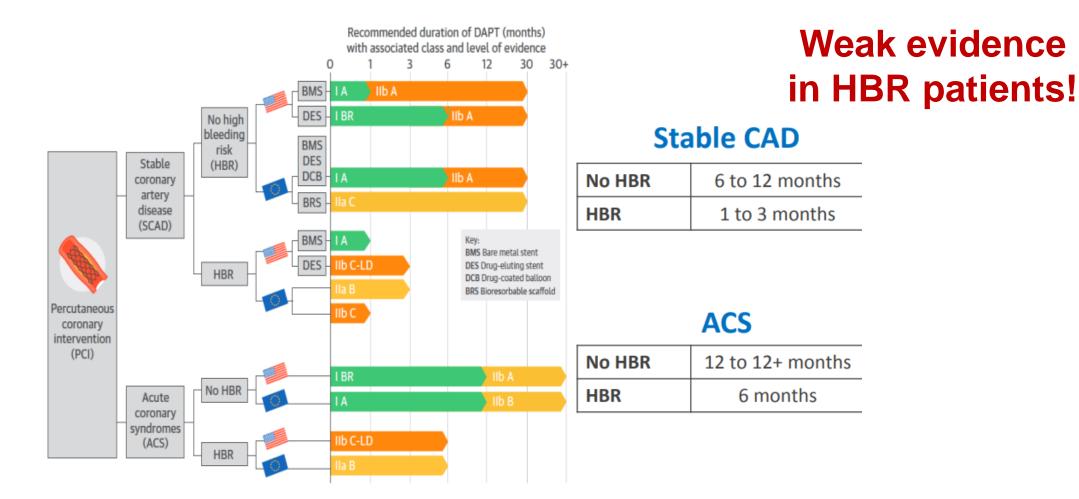
Disclosure


Affiliation/Financial Relationship	Company				
Research Payments to Institution	Abbott, Abiomed, Alleviant, Amgen, AM-Pharma, Applied Therapeutics, Arena, AstraZeneca, BAIM, Bayer, Biosensors, Biotronik, BMS, BSC, CardiaWave, CellAegis, CeloNova, CERC, Chiesi, Concept Medical, CSL Behring, Cytosorbents, DSI, Duke University, Element Science, Faraday, Humacyte, Idorsia, Insel Gruppe AG, Medtronic, OrbusNeich, , Philips, RenalPro, Vivasure, Zoll.				
Consulting	Cine-Med Research, WebMD				
Consulting, fees paid to the institution	Abbott, Janssen, Medtronic, Novartis.				
Equity, <1%	Applied Therapeutics, Elixir Medical, STEL, ControlRad (spouse)				
Scientific Advisory Boards/Committees	AMA, ACC (BOT member), SCAI				

High-Bleeding Risk Patients - Who?

Urban P et al. Circulation. 2019;140:240–261

HBR Patients are also high-ischemic risk!



Cao D, Mehran R, et al. J Am Coll Cardiol. 2020 Jun 2;75(21):2711-2722; Ueki Y et al. EuroIntervention. 2020

High-Bleeding Risk Patients – The Dilemma

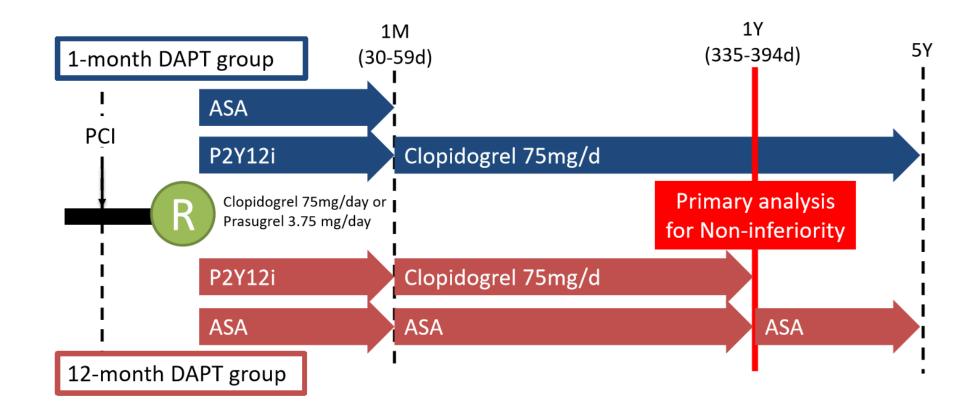
- Contemporary DES are significantly safer than early-generation DES, which makes the use of long DAPT durations <u>unnecessary</u> for the prevention of ST during the 1st year after PCI.
- DAPT remains of sustained utility to prevent non-DES-related events, especially in patients at high risk of thrombosis.
- The decision regarding DAPT duration requires consideration of individual patient and procedure characteristics.
- Prolonging DAPT could be detrimental in patients at high risk of bleeding, and early discontinuation might be safe from the mere standpoint of the stent platform.

DAPT in HBR: How Long? ACC Vs ESC Guidelines

Capodanno D et al., J Am Coll Cardiol. 2018 Dec 11;72(23 Pt A):2915-2931.

Novel DAPT strategies in HBR patients

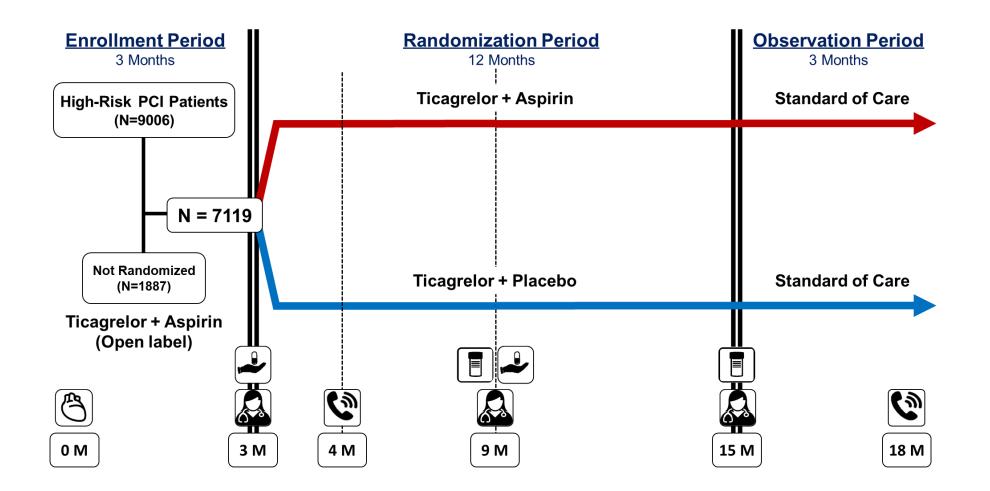
What are the options?


To reduce the risk of bleeding further in HBR patients, two strategies are of current investigational interest:

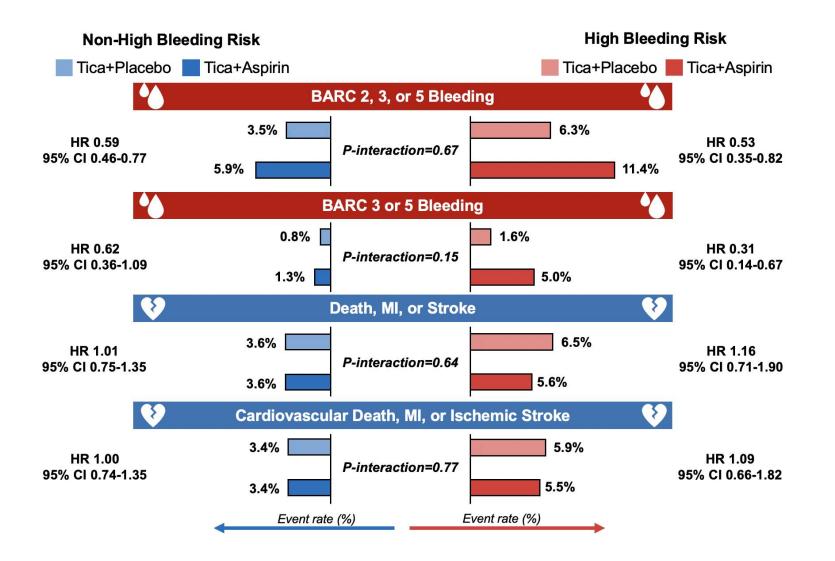
- Shortening DAPT: by dropping the P2Y₁₂ inhibitor or aspirin (Evaluated in HBR patients).
- Modulating DAPT: by means of de-escalation of drug types and doses (Evaluated in <u>all</u> patients).

Recent studies on <u>SHORTENING</u> DAPT in HBR patients

1-Month DAPT Followed by Clopidogrel vs 12-Month DAPT on CV and Bleeding Events in Patients Undergoing PCI *The STOPDAPT-2 Trial*

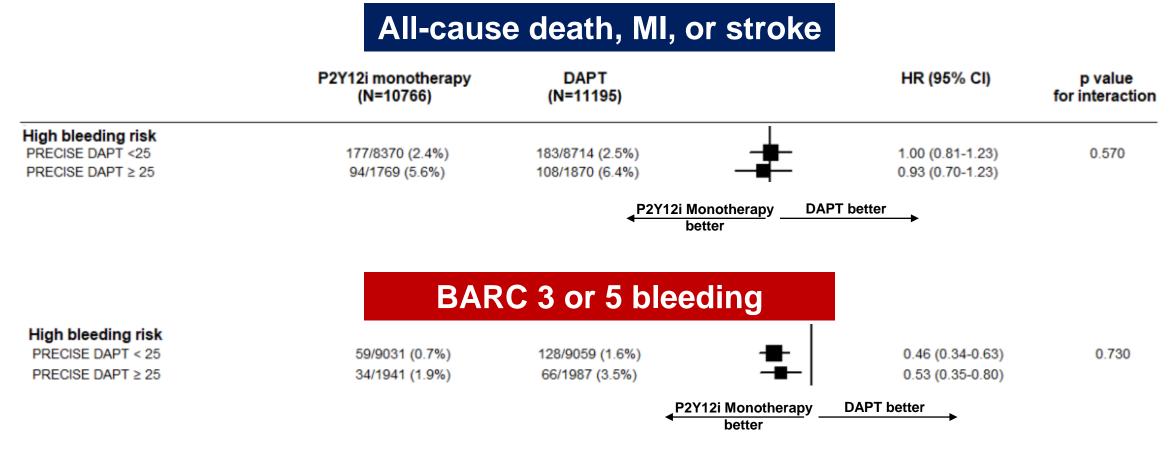


STOPDAPT-2 Trial:		(N of patient	-year incidence ts with event/ atients)					
HBR Sub-study				Absolute difference (95%CI)	Hazard Ratio (95%CI)	D	P value	P interaction
NACE	Primary Endpoint	3.48% (17/496)	5.98% (33/558)	-2.50% (-5.06% to 0.06%)	0.57 (0.32-1.03)		0.06	0.48
	Non-HBR	1.81% (18/1004)	2.36% (22/951)	-0.55% (-1.83% to 0.73%)	0.78 (0.42-1.45)		0.43	0.10
	Overall	2.36% (35/1500)	3.70% (55/1509)	-1.34% (-2.57% to -0.11%)	0.64 (0.42-0.98)		0.038	
MACE	Major Secondary Cardiovascular Endpoint							
	HBR	3.07% (15/496)	4.03% (22/558)	-0.96% (-3.21% to 1.29%)	0.77 (0.40-1.48)		0.43	0.77
	Non-HBR	1.41% (14/1004)	1.61% (15/951)	-0.20% (-1.28% to 0.88%)	0.89 (0.43-1.84)		0.75	
	Overall	1.96% (29/1500)	2.51% (37/1509)	-0.55% (-1.62% to 0.52%)	0.79 (0.49-1.29)		0.34	
TIMI	Major Secondary Bleeding Endpoint							
major or	HBR	0.41% (2/496)	2.71% (15/558)	-2.30% (-3.77% to -0.83%)	0.15 (0.03-0.65)	-// _■	0.01	0.22
minor	Non-HBR	0.40% (4/1004)	0.85% (8/951)	-0.45% (-1.16% to 0.26%)	0.48 (0.14-1.58)		0.22	
Bleeding	Overall	0.41% (6/1500)	1.54% (23/1509)	-1.13% (-1.84% to -0.42%)	0.26 (0.11-0.64)	_ _	0.004	
						0.0625 0.25 1 	4 onth DAPT be	tter


Watanabe H et al. Circulation. 2019;140:1957–1959

•

TWILIGHT Trial – Ticagrelor Monotherapy After PCI


TWILIGHT Trial: *HBR Sub-study*

Escaned J et al. Eur Heart J. 2021 Dec 1;42(45):4624-4634.

P2Y12 Inhibitor Monotherapy After Short DAPT An IPD meta-analysis of 24,096 patients

Trials included: DACAB, GLASSY, SMART-CHOICE, STOPDAPT-2, TICO, and TWILIGHT

Valgimigli M and Mehran R et.al., BMJ, 2021.

ГСТАР 2022

DAPT after PCI in Patients at HBR MASTER-DAPT Trial

Screened Population: HBR pts, treated exclusively with Ultimaster stent, with no restriction based on clinical presentation (12% STEMI) or PCI complexity

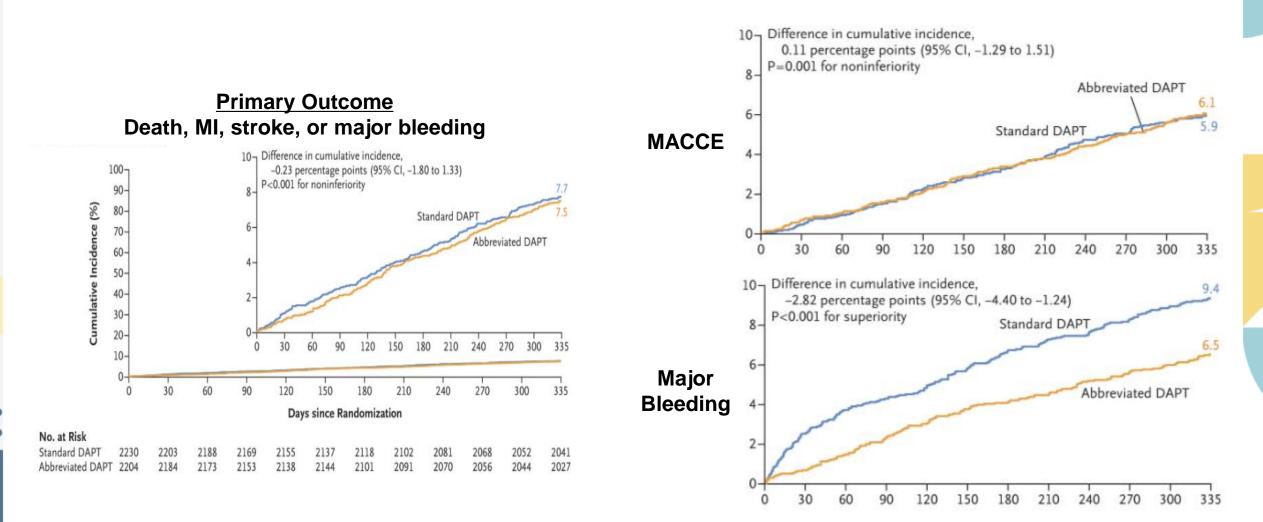
30 (+14) Days after PCI

Free from cardiac and cerebral ischemic events and <u>active</u> bleeding No further revascularization planned

> Sx: Site Need for oral anticoagulation Prior MI within 12 months

Abbreviated DAPT

Immediate DAPT discontinuation

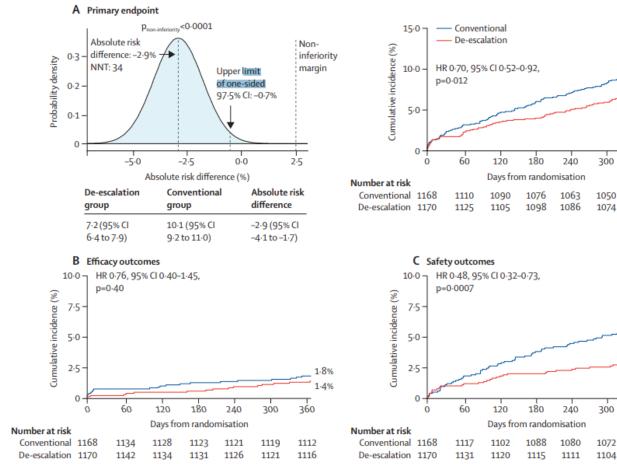

followed by SAPT for 11 months or 5 months if OAC is indicated

Standard DAPT

DAPT for ≥ 2 or 5 months in pts with or without OAC indication, respectively

followed by SAPT up to 11 months

DAPT after PCI in Patients at HBR MASTER-DAPT Trial


Recent studies on <u>MODULATING</u> DAPT in HBR patients (Most likely beneficial)

Prasugrel-based de-escalation of DAPT after PCI in patients with ACS - HOST-REDUCE-POLYTECH-ACS

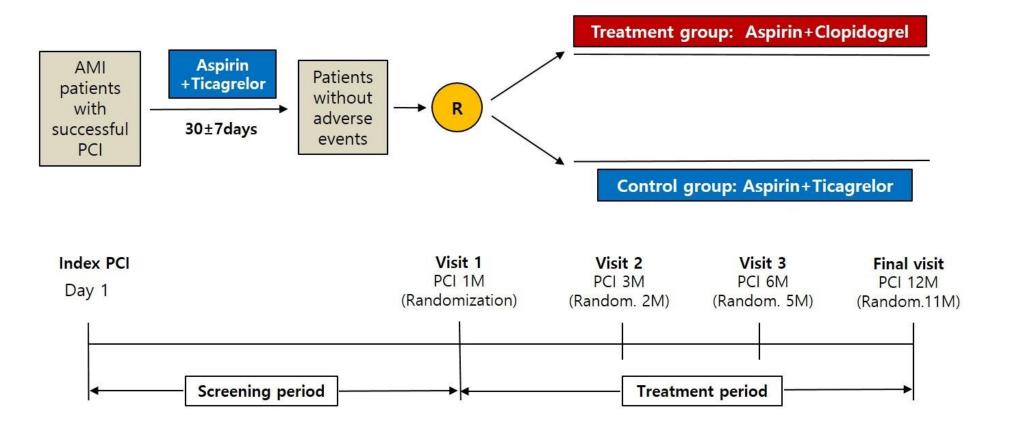
2338 patients were randomly assigned to the deescalation group (n=1170) or the conventional group (n=1168)

In East Asian ACS patients undergoing PCI, a prasugrel-based dose de-escalation strategy (from 10 to 5 mg) from 1 month after PCI reduced the risk of net clinical outcomes up to 1 year, mainly driven by a reduction in bleeding without an increase in ischaemia.

10.19

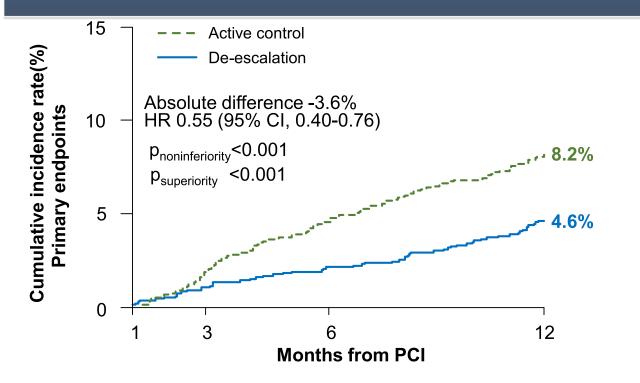
360

1028


1058

360

1061


1097

Ticagrelor vs. Clopidogrel in Stabilized Patients with AMI: TALOS-AMI Trial

Ticagrelor vs. Clopidogrel in Stabilized Patients with AMI: TALOS-AMI Trial

Composite of cardiovascular death, MI, stroke and BARC bleeding (type 2,3, or 5)

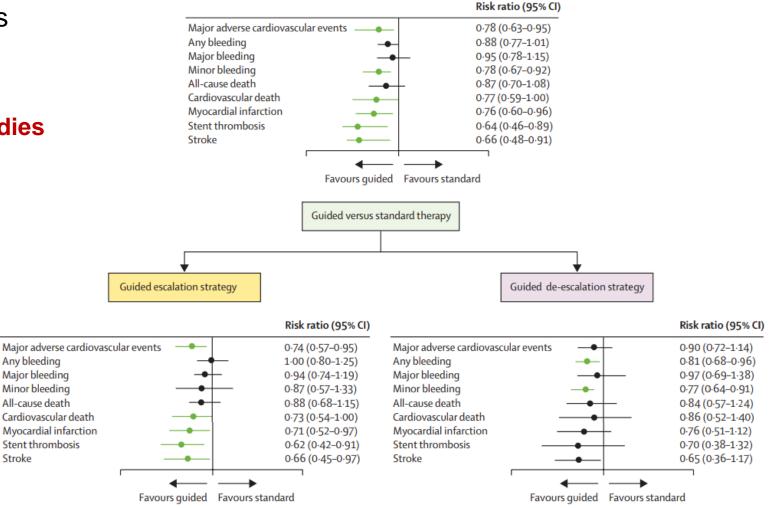
In AMI patients who had no major adverse events during the first month after an index PCI, a uniform, unguided de-escalation DAPT switching from ticagrelor to strategy clopidogrel was superior to the ticagrelorbased continuing DAPT strategy in terms of net clinical benefit, with a significant decrease in bleeding risk and no increase in ischemic risk.

De-Escalation Strategies: A Meta-Analysis Results

11 RCTs and 3 observational studies with data for 20 743 patients.

Shen et al³⁴

Lee et al³⁶


11 RCTs

3 Observational Studies

Sánchez-Ramos et al³⁵

POPular Genetics¹⁹ TAILOR-PCI²⁰ ARCTIC²¹ ANTARCTIC²² TROPICAL-ACS²³ PHARMCLO²⁴ IAC-PCI²⁹ Zhu et al³⁰ PATH-PCI³¹ Tuteja et al³² Hazarbasanov et al³³

TALOS AMI not included!

Galli M et al., The Lancet. 2021

ГСТАР 2022

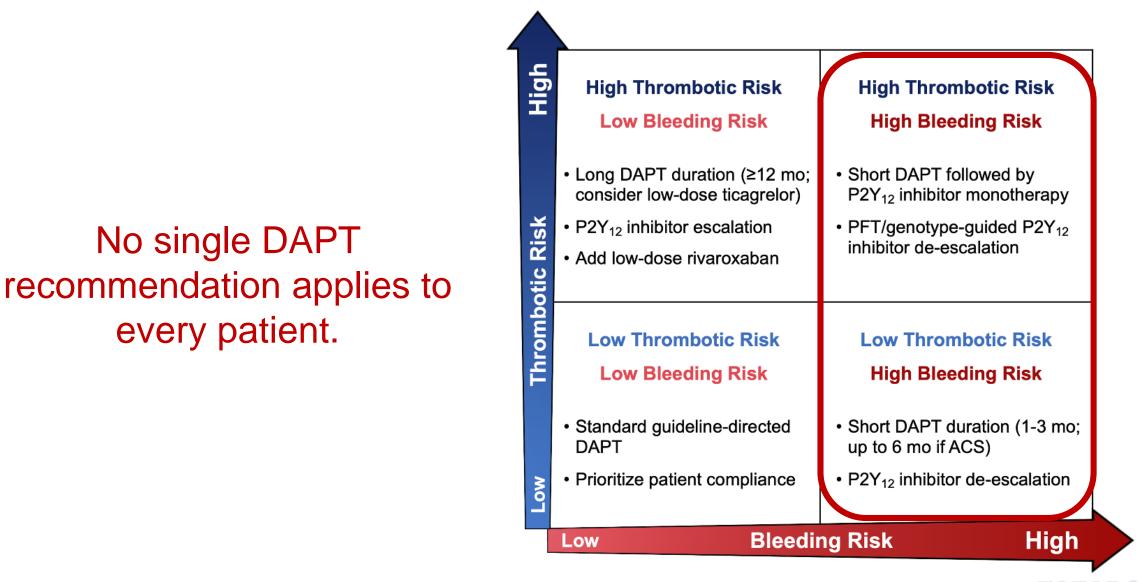
Guided and Unguided De-Escalation from Potent P2Y12 Inhibitors Among Patients with ACS: a Meta-Analysis

BARC 2-5 Bleeding

Study	Hazard Ratio	HR with 95% CI	Weight	Study	Hazard Ratio	HR with 95% CI	Weight
Unguided de-escalation TOPIC \blacktriangle HOST-REDUCE-POLYTECH-ACS \bullet TALOS-AMI \bigstar Fixed effect model Random effects model Heterogeneity: $l^2 = 34\%$, $\tau^2 = 0.0251$, $p = 0.22$		0.30 [0.18; 0.50] 0.48 [0.32; 0.72] 0.52 [0.35; 0.77] 0.44 [0.35; 0.57] 0.44 [0.32; 0.59]	15.9% 18.6% 19.1% 	Unguided de-escalation TOPIC \blacktriangle HOST-REDUCE-POLYTECH-ACS \bullet TALOS-AMI \blacktriangle Fixed effect model Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 0.91$		0.80 [0.50; 1.28] 0.76 [0.40; 1.45] 0.69 [0.42; 1.14] 0.75 [0.55; 1.01] 0.75 [0.55; 1.01]	21.8% 11.8% 19.6%
Guided de-escalation TROPICAL- ACS POPular Genetics Fixed effect model Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 0.73$		0.82 [0.63; 1.07] 0.77 [0.61; 0.97] 0.79 [0.66; 0.94] 0.79 [0.66; 0.94]	22.8% 23.7% 	Guided de-escalation TROPICAL-ACS POPular Genetics Fixed effect model Random effects model Heterogeneity: $f^2 = 0\%$, $\tau^2 = 0$, $p = 0.82$		0.77 [0.48; 1.22] 0.83 [0.53; 1.30] 0.80 [0.58; 1.11] 0.80 [0.58; 1.11]	22.9% 23.9% 46.8%
Fixed effect model Random effects model Heterogeneity: $l^2 = 77\%$, $\tau^2 = 0.0949$, $p < 0.01$	0.2 0.5 1 2 De-escalation better	0.65 [0.57; 0.75] 0.57 [0.42; 0.78] 5 PT better	 100.0%	Fixed effect model Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 0.99$	0.5 1 2 De-escalation better Standard DAP	0.77 [0.62; 0.96] 0.77 [0.62; 0.96]	100.0%

de-escalation to clopidogrel

de-escalation to reduced dose of potent P2Y12 inhibitor


TALOS AMI included!

de-escalation to clopidogrel

de-escalation to reduced dose of potent P2Y12 inhibitor

MACE

Take-Home Messages

Cao D et al., Eur Heart J. 2020 Dec 26;ehaa824.