Lower for Longer: Effective lipid lowering Rising on Ezetimibe Therapy

Gyu Chul Oh, MD

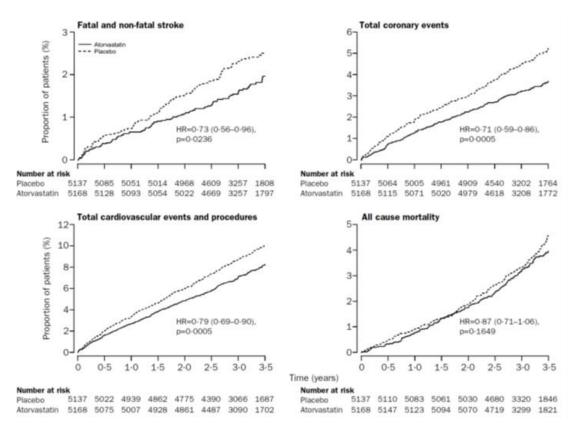
The Catholic University of Korea
Seoul St. Mary's Hospital

Disclosure

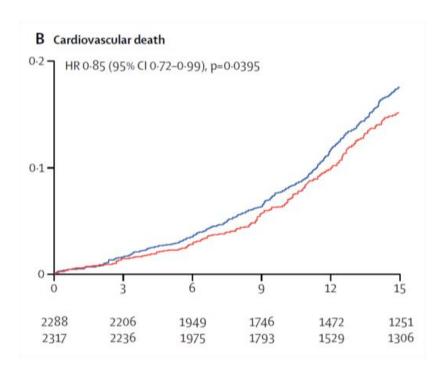
None

Contents

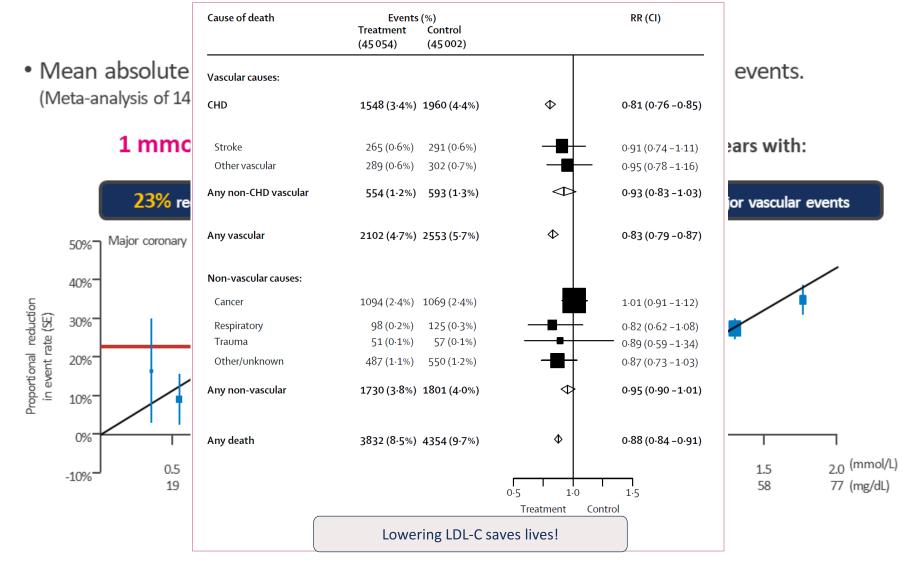
- Relationship between LDL-C and CV disease
- "Lower is better" evidence & safety
- Benefit of Ezetimibe combination

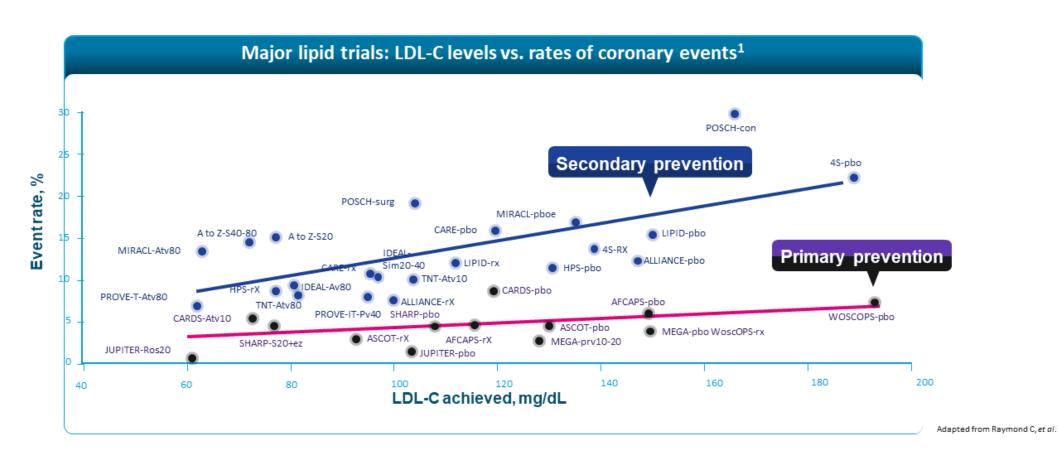

Contents

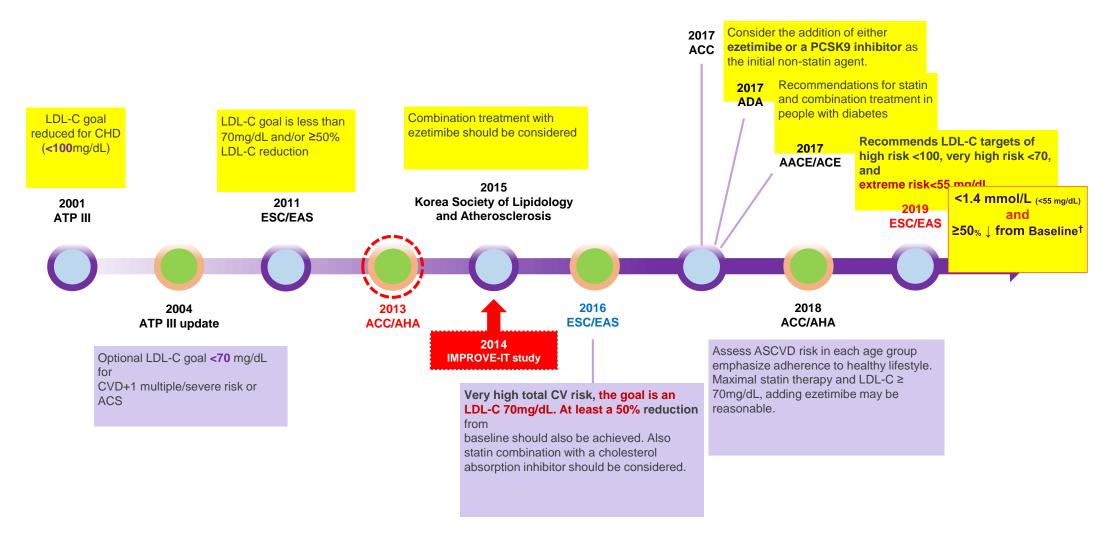
- Relationship between LDL-C and CV disease
- "Lower is better" evidence & safety
- Benefit of Ezetimibe combination


Statin therapy reduce future CV events

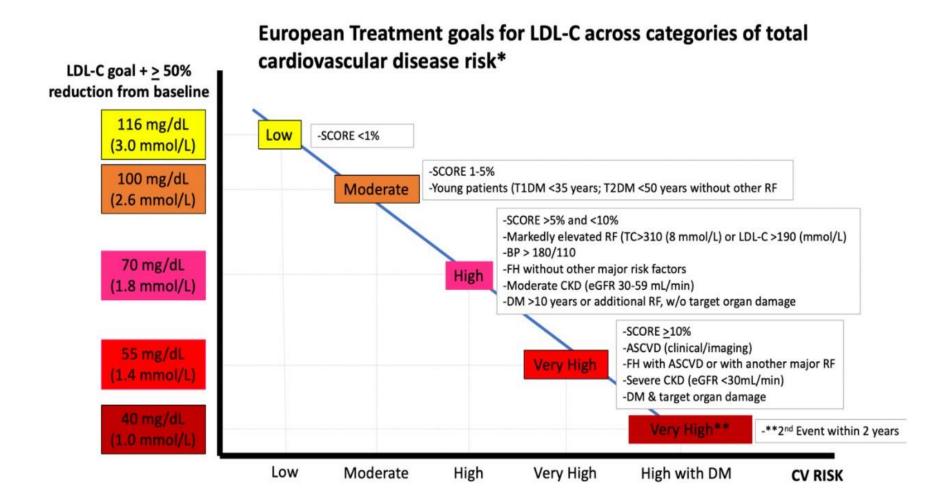
Atorvastatin 10mg vs. Placebo


Atorvastatin 10mg was associated with lower coronary and cerebral events in the ASCOT-LLA trial


Benefits of statins persisted in reducing CV death (ASCOT-Legacy)


LDL-C lowering is correlated with CV risk reduction

Relationship between achieved LDL-C levels and absolute risk¹



Trends in guidelines for treatment of cholesterol

2019 ESC/EAS Dyslipidemia Guideline

Treatment goals for LDL-C

Three Key Concepts of Lipid-lowering Strategies

2019 ESC/EAS Guidelines

European Heart Journal (2019) **00**, 1-78 doi:10.1093/eurhearti/ehz455

2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk

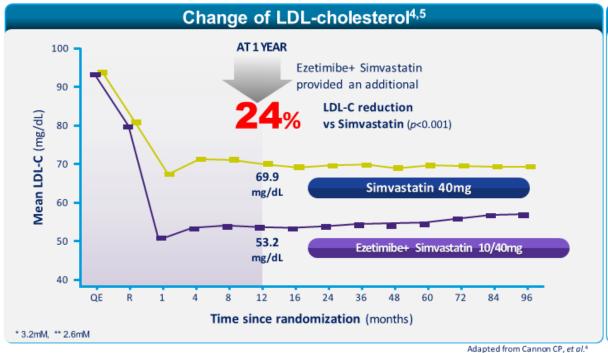
- Concept Change I: Start Early
 - Less "lipid-exposure" leads to prevention of lesion formation
- Concept Change II: Treat (Much More) Aggressively
 - From desirable target to "LDL-C elimination in the blood"
- Concept Change III: Use Combination Therapy
 - Statin + Ezetimibe (+/- PCSK9 Inhibitor) induced LDL-C lowering reduces CV risk

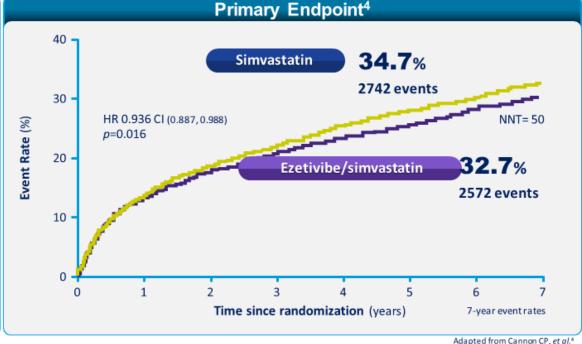
Contents

- Relationship between LDL-C and CV disease
- "Lower is better" evidence & safety
- Benefit of Ezetimibe combination

Addition of ezetimibe lowers LDL-C and CV events

IMPROVE-IT


18,144 patients stabilized post ACS ≤ 10 days: LDL-C 50–125*mg/dL (or 50–100**mg/dL if prior lipid-lowering Rx) Ezitimibe/simvastatin 10/40 mg
Simvastatin 40 mg


Primary Endpoint:

CV death, MI, hospital admission for UA, coronary revascularization

(≥ 30 days after randomization), or stroke

Duration: Minimum 21/2--year follow-up (at least 5250 events)

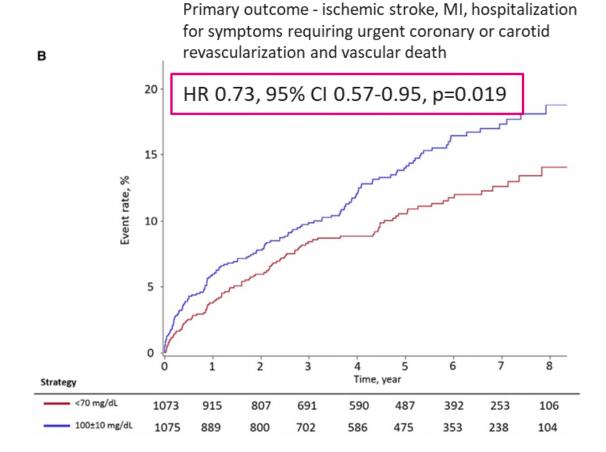
Adapted from Carmon Cr, et al.

Benefit of Targeting LDL-C <70mg/dL after an Ischemic Stroke

Treat Stroke to Target (TST)

Benefit of Targeting a LDL (Low-Density Lipoprotein) Cholesterol <70 mg/dL During 5 Years After Ischemic Stroke

Pierre Amarenco[©], MD; Jong S. Kim, MD; Julien Labreuche, BST; Hugo Charles, BST; Maurice Giroud, MD; Byung-Chul Lee, MD; Marie-Hélène Mahagne, MD; Norbert Nighoghossian, MD; Philippe Gabriel Steg, MD; Éric Vicaut, MD; Eric Bruckert, MD; on behalf of the Treat Stroke to Target Investigators*


Background and Purpose—The TST trial (Treat Stroke to Target) evaluated the benefit of targeting a LDL (low-density lipoprotein) cholesterol of <70 mg/dL to reduce the risk of cardiovascular events in 2860 patients with ischemic stroke with atherosclerotic stenosis of cerebral vasculature or aortic arch plaque >4 mm, in a French and Korean population. The follow-up lasted a median of 5.3 years in French patients (similar to the median follow-up time in the SPARCL trial [Stroke Prevention by Aggressive Reduction in Cholesterol Level]) and 2.0 years in Korean patients. Exposure duration to statin is a well-known driver for cardiovascular risk reduction. We report here the TST results in the French cohort.

Methods—One thousand seventy-three French patients were assigned to <70 mg/dL (1.8 mmol/L) and 1075 to 100±10 mg/dL (90–110 mg/dL, 2.3–2.8 mmol/L). To achieve these goals, investigators used the statin and dosage of their choice and added ezetimibe on top if needed. The primary outcome was the composite of ischemic stroke, myocardial infarction, new symptoms requiring urgent coronary or carotid revascularization and vascular death.</p>

Results—After a median follow-up of 5.3 years, the achieved LDL cholesterol was 66 (1.69 mmol/L) and 96 mg/dL (2.46 mmol/L) on average, respectively. The primary end point occurred in 9.6% and 12.9% of patients, respectively (HR, 0.74 [95% CI, 0.57–0.94]; P=0.019). Cerebral infarction or urgent carotid revascularization following transient ischemic attack was reduced by 27% (P=0.046). Cerebral infarction or intracranial hemorrhage was reduced by 28% (P=0.023). The primary outcome or intracranial hemorrhage was reduced by 25% (P=0.021). Intracranial hemorrhages occurred in 13 and 11 patients, respectively (HR, 1.17 [95% CI, 0.53–2.62]; P=0.70).

Conclusions—After an ischemic stroke of documented atherosclerotic origin, targeting a LDL cholesterol of <70 mg/dL during 5.3 years avoided 1 subsequent major vascular event in 4 (number needed to treat of 30) and no increase in intracranial hemorrhage.</p>

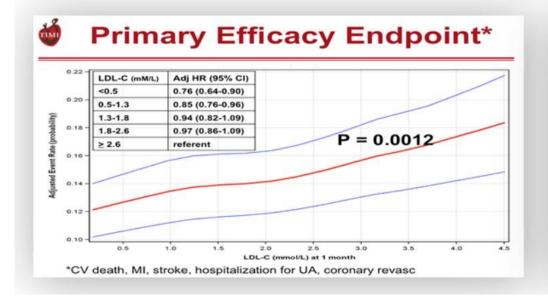
Registration—URL: https://www.clinicaltrials.gov; Unique identifier: NCT01252875.
(Stroke, 2020;51:1231-1239, DOI: 10.1161/STROKEAHA.119.028718.)

Intensive lowering of LDL-C associated with lower CV & cerebral events

Outcomes	<70 mg/dL (N=1073)	100±10 mg/dL (N=1075)	Hazard Ratio (95% CI)	P Value
Primary outcome				
Major cardiovascular events	103/1073 (9.6)	139/1075 (12.9)	0.74 (0.57-0.95)*	0.019*
Death from cardiovascular causes	17/1073 (1.6)	22/1075 (2.0)		
Fatal cerebral infarction or undetermined stroke	3/1073 (0.3)	6/1075 (0.6)		
Fatal myocardial infarction	1/1073 (0.1)	1/1075 (0.1)		
Other vascular deaths	7/1073 (0.7)	5/1075 (0.5)		
Sudden death	6/1073 (0.6	10/1075 (0.9)		
Nonfatal cerebral infarction or undetermined stroke	65/1073 (6.1)	89/1075 (8.3)		
Nonfatal acute coronary syndrome	15/1073 (1.4)	22/1075 (2.0)		
Urgently required coronary revascularization	3/1073 (0.3)	3/1075 (0.3)		
Urgently required carotid revascularization	3/1073 (0.3)	3/1075 (0.3)		
Secondary outcomes				
Myocardial infarction or urgent coronary revascularization	18/1073 (1.7)	27/1075 (2.5)	0.66 (0.37-1.20)	0.18
Cerebral infarction or urgent carotid or cerebral artery revascularization	72/1073 (6.7)	98/1075 (9.1)	0.73 (0.54-0.99)	0.046
Cerebral infarction or TIA	103/1073 (9.6)	125/1075 (11.6)	0.83 (0.64-1.08)	0.16
Any revascularization procedure (both urgent and elective)	90/1073 (8.4)	87/1075 (8.0)	1.01 (0.75–1.36)	0.94
Carotid	17/90	22/87		
Coronary	41/90	41/87		
Peripheral	32/90	24/87		
Vascular death	22/1073 (2.1)	29/1075 (2.7)	0.76 (0.44-1.32)	0.32
All-cause death	86/1073 (8.0)	86/1075 (8.0)	1.0 (0.74–1.35)	0.99
Cerebral infarction or intracranial hemorrhage	80/1073 (7.5)	112/1075 (10.4)	0.72 (0.54-0.96)	0.023
Intracranial hemorrhage	13/1073 (1.2)	11/1075 (1.0)	1.17 (0.53-2.62)	0.70
Newly diagnosed diabetes mellitus†	87/1073 (8.1)	66/1075 (6.1)	1.33 (0.97–1.84)	0.076
Primary outcome or intracranial hemorrhage	111/1073 (10.3)	146/1075 (13.6)	0.75 (0.58-0.96)	0.021

26% reduction

TCTAP 2022


Stroke. 2020;51:1231-1239.

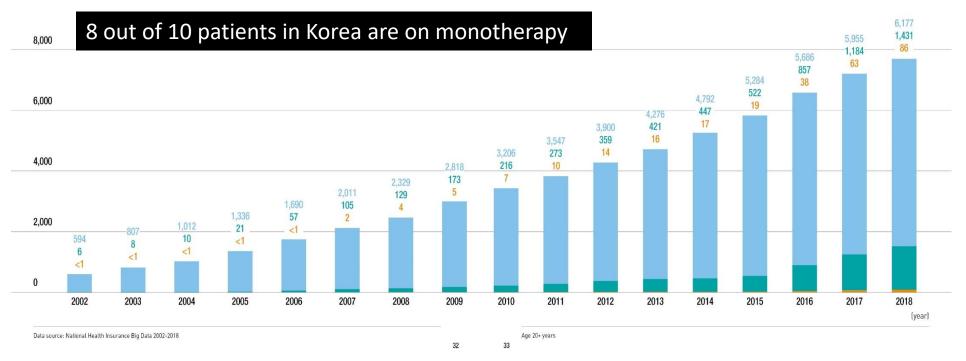
Benefit of intensive cholesterol-lowering therapy

Clinical efficacy and safety of achieving very low LDL-CLDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab (FOURIER trial)

Robert P Giugliano, Terje R Pedersen, Jeong-Gun Park, Gaetano M De Ferrari, Zbigniew A Gaciong, Richard Ceska, Kalman Toth, Ioanna Gouni-Berthold, Jose Lopez-Miranda, François Schiele, François Mach, Brian Ott, Estella Kanevsky, Armando Lira Pineda, Ransi Somaratne, Scott M Wasserman, Anthony C Keech, Peter S Sever, Marc S Sabatine; on behalf of the FOURIER Investigators

Exploratory Analysis – 1 Achieved LDL-C <0.4 mM/L*							
	LDL-C at	4 Weeks					
	<0.4 (N=1335)	≥2.6 (N=4395)					
	n (%)	n (%)	Adjusted HR (95% CI)	Р			
Efficacy Endpoints							
CVD, MI, stroke, UA, cor revasc	105 (7·9)	521 (11·9)	0·71 (0·56-0·89)	0.003			
CV death, MI, stroke	66 (4.9)	345 (7·8)	0·66 (0·50-0·88)	0.005			
Safety Endpoints							
Serious AE	313 (23·4)	1022 (23·3)	0·96 (0·81-1·13)	0.63			
AE -> drug DC	42 (3·1)	149 (3·4)	0·89 (0·60-1·32)	0.56			

Trends in lipid lowering therapy


Changes in Prescriptions of Lipid-Lowering Drugs

(×1000 persons) 10,000 Estimated Number of People With Dyslipidemia by Treatment Strategy

Four out of 5 people treated for dyslipidemia take one lipid-lowering drug. Use of dual therapy is steadily increasing up to 18.6% in 2018. Proportion of triple therapy was only 1.1% in 2018.

"In 2018, the proportion of monotherapy, dual therapy and triple therapy, respectively, was 80.3%, 18.6% and 1.1%."

LDL-C goal achievement and incidence of cardiovascular disease in South Korean patients

Achievement of the low-density lipoprotein cholesterol goal among patients with dyslipidemia in South Korea

Siin Kim1, Sola Han1, Pratik P. Rane2, Yi Qian2, Zhongyun Zhao2, Hae Sun Suho11

1 College of Pharmacy, Pusan National University, Busan, Korea (South), 2 Amgen Inc., Thousand Oaks, CA, United States of America

* haesun.suh@pusan.ac.kr

OPEN ACCESS

Citation: Kim S, Han S, Rane PP, Qian Y, Zhao Z, Suh HS (2020) Achievement of the low-density lipoprotein cholesterol goal among patients with dystipidemia in South Korea. PLoS ONE 15(1): e0228472. https://doi.org/10.1371/journal. pone.0228472

Editor: Luigina Guasti, Internal Medicine 1, ITALY

Received: September 2, 2019

Accepted: January 16, 2020

Published: January 30, 2020

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of

Abstract

Background

It is important to achieve the low-density lipoprotein cholesterol (LDL-C) goal recommended by clinical guidelines in managing the risk of cardiovascular (CV) events, however, the current management of LDL-C in actual clinical settings is suboptimal. We examined the LDL-C level among patients with dyslipidemia against the 2015 Korean guidelines, the crude rates of CV events based on LDL-C goal achievement, and the factors associated with LDL-C goal achievement.

Methods

This was a retrospective cohort study using the National Health Insurance Service—National Health Screening Cohort (NHIS-HEALS) database from 2006 to 2013. Patients who had a health examination with LDL-C measurement between January 1, 2007, and December 31, 2011 were identified. Patients were required to have at least one diagnosis of dyslipidemia during the 1 year before the index date, defined as the first date of LDL-C measurement. The 2015 Korean guidelines were used to measure LDL-C goal achievement based on the CV risk level. Crude CV event rates were calculated for total and individual CV events as the

Patients who received health examination with LDL-C measurement between January 1, 2007, and December 31, 2011
(n=414,088)

Patients without any missing values in major risk factors
(n=312,622)

Patients with at least one diagnosis of dyslipidemia during the one year before the index date
(n=69,942)

Patients who achieved LDL-C goal
(n=33,270)

Patients who did not achieve LDL-C goal
(n=36,672)

Fig 2. Sample selection process. The index date was defined as the first date of health examination with LDL-C goals per CV risk level were

defined by the 2015 Korean guidelines. LDL-C, low-density lipoprotein cholesterol. https://doi.org/10.1371/journal.pone.0228472.g002

Conclusions

In South Korea, LDL-C goal achievement among patients with very high or high CV risk was suboptimal. Patients who did not achieve the goal showed a higher rate of CV events during the follow-up period than patients who achieved the goal. LDL-C management strategies should be highlighted in dyslipidemia patients who are less likely to achieve the goal, such as female, overweight or obese patients, patients not adherent to statin, or patients with very high or high CV risk.

LDL-C goal achievement and incidence of cardiovascular disease in South Korean patients

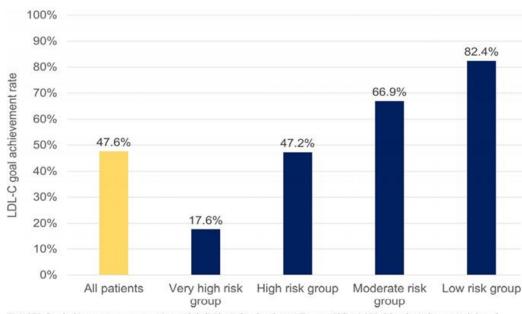


Fig 3. LDL-C goal achievement rates among patients with dyslipidemia (based on the 2015 Korean guidelines). LDL-C, low-density lipoprotein cholesterol. https://doi.org/10.1371/journal.pone.0228472.0003

<70 mg/dL for very high risk

<100 mg/dL for high risk

<130 mg/dL for moderate risk

<160 mg/dL for low risk.

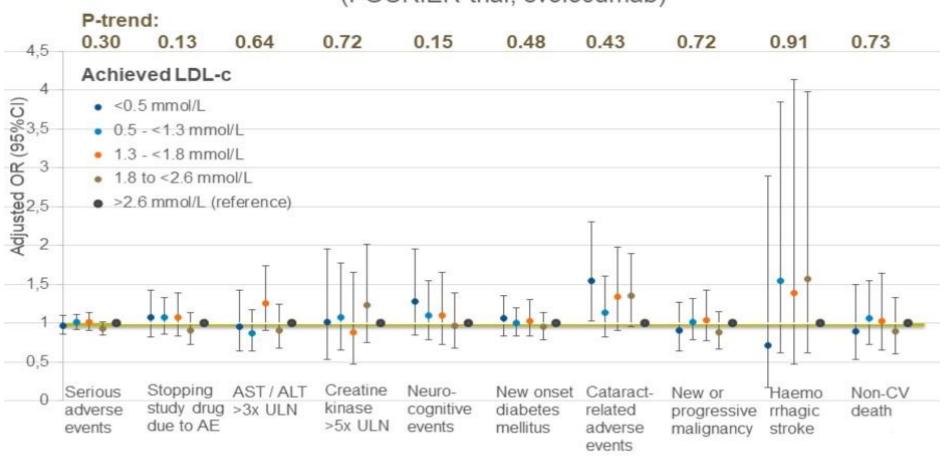
Table 2. Crude cardiovascular event rates based on LDL-C goal achievement.

CV events	LDL-C goo	LDL-C goal achievers		LDL-C goal non-achievers		
	Number of events	Rates per 100 PYs	Number of events	Rates per 100 PYs		
Total CV events ^b	11,560	11.93	19,890	24.35	< 0.0001	
All-cause death	539	0.56	718	0.88	< 0.0001	
CV death	39	0.04	73	0.09	< 0.0001	
Acute coronary syndrome ^c	1,764	1.82	3,021	3.70	< 0.0001	
Ischemic stroke	1,686	1.74	3,584	4.39	< 0.0001	
Peripheral artery disease	7,571	7.81	12,567	15.38	< 0.0001	

CV, cardiovascular; LDL-C, low-density lipoprotein cholesterol; PY, person-year.

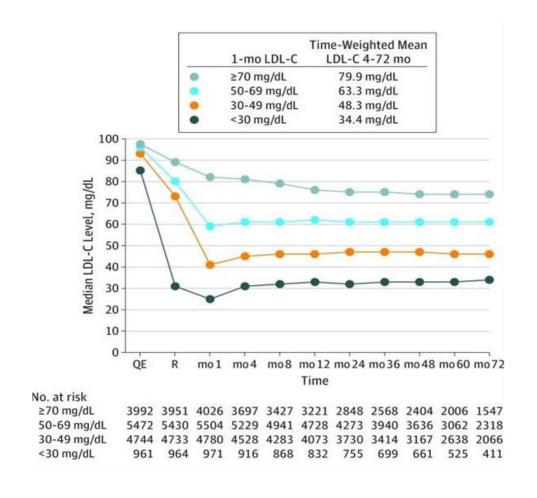
https://doi.org/10.1371/journal.pone.0228472.t002

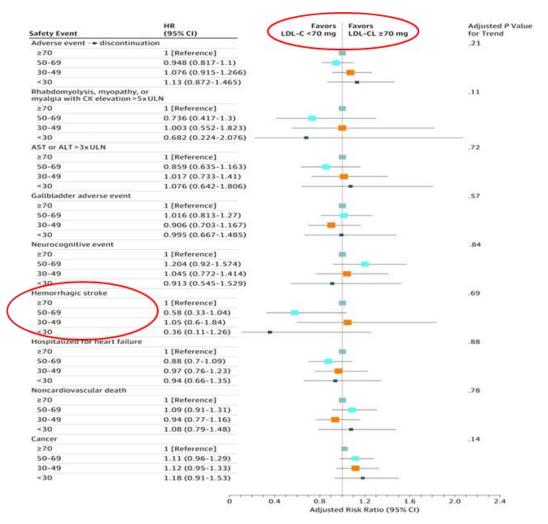
^{*}P-values for differences between rates of LDL-C goal achievers and non-achievers.


^bTotal CV events included all-cause death, acute coronary syndrome, ischemic stroke, and peripheral artery disease.

^cAcute coronary syndrome is a composite of myocardial infarction and unstable angina.

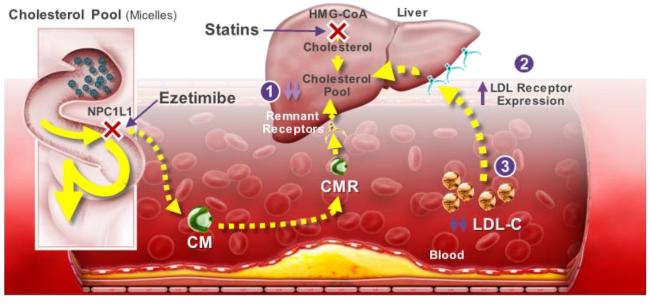
Safety of very low LDL-C


- Insights from the FOURIER trial

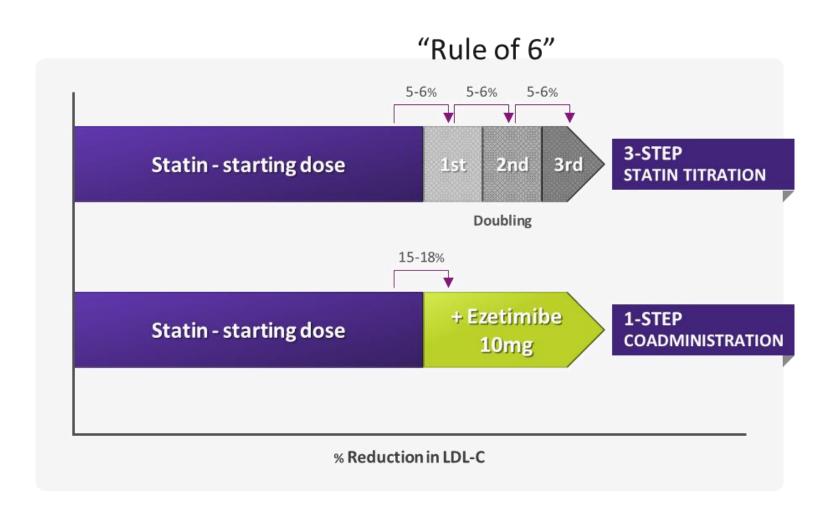

Safety of achieving very low LDL-c with PCSK9 inhibition (FOURIER trial, evolocumab)

Safety of very low LDL-C

- Insights from IMPROVE-IT subanalysis

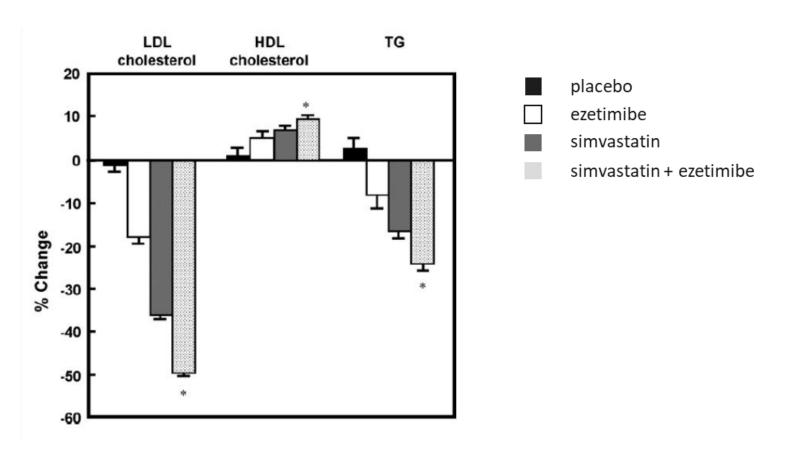


Contents


- Relationship between LDL-C and CV disease
- "Lower is better" evidence & safety
- Benefit of Ezetimibe combination

Ezetimibe and statins have complementary mechanisms of action

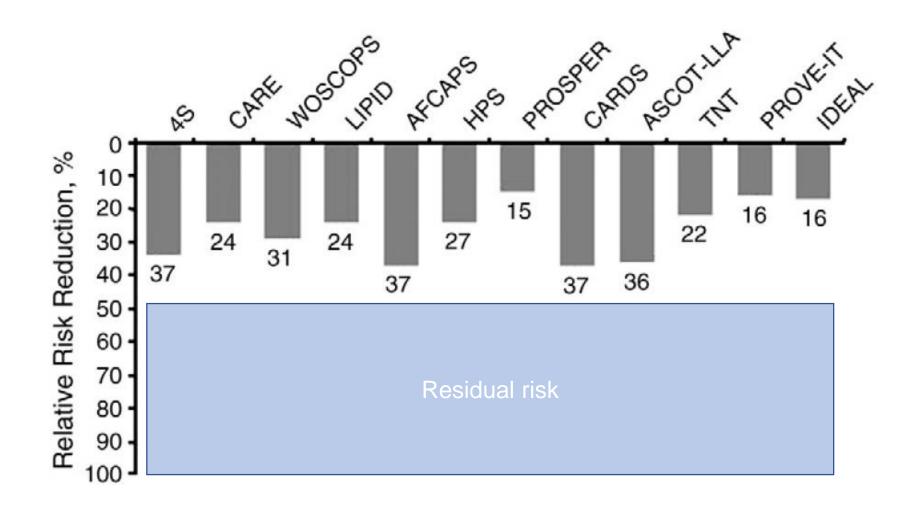
- **▶** Together, ezetimibe in combination with a statin provides¹:
 - Reduction of hepatic cholesterol
 - Increased LDL receptor expression
 - Increased clearance of plasma LDL-C


Ezetimibe add-on therapy lowers LDL-C as much as 8x dose of statins

Benefits of ezetimibe treatment

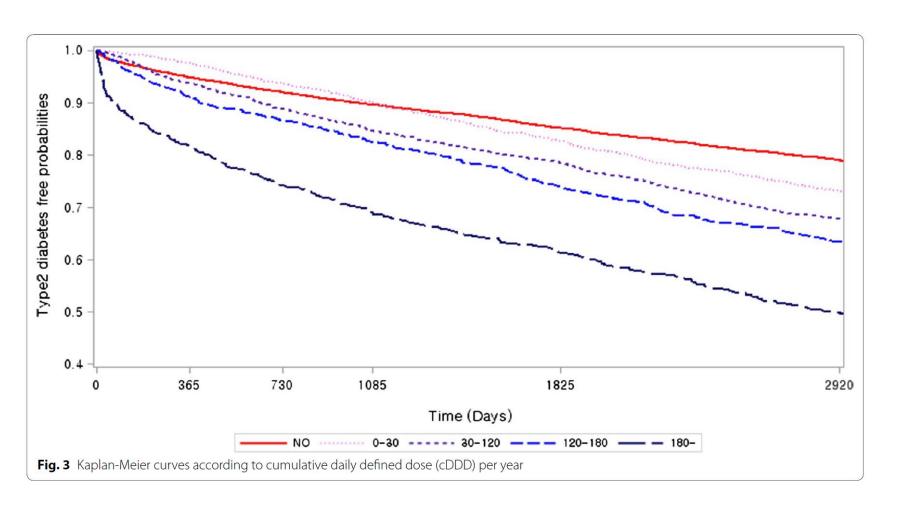
cholesterol improvement

Addition of ezetimibe not only improved LDL cholesterol, but also HDL-C, TG

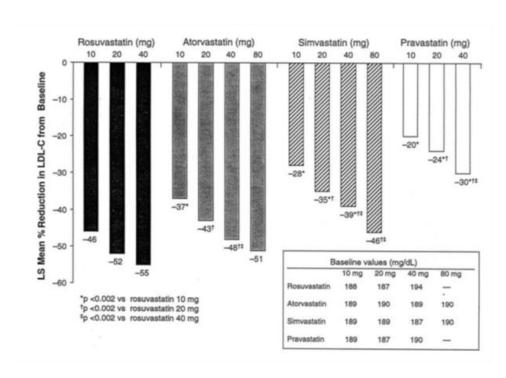

Benefits of ezetimibe treatment

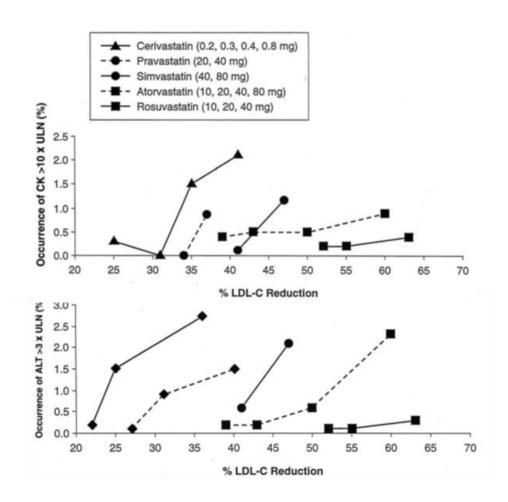
metabolic improvement

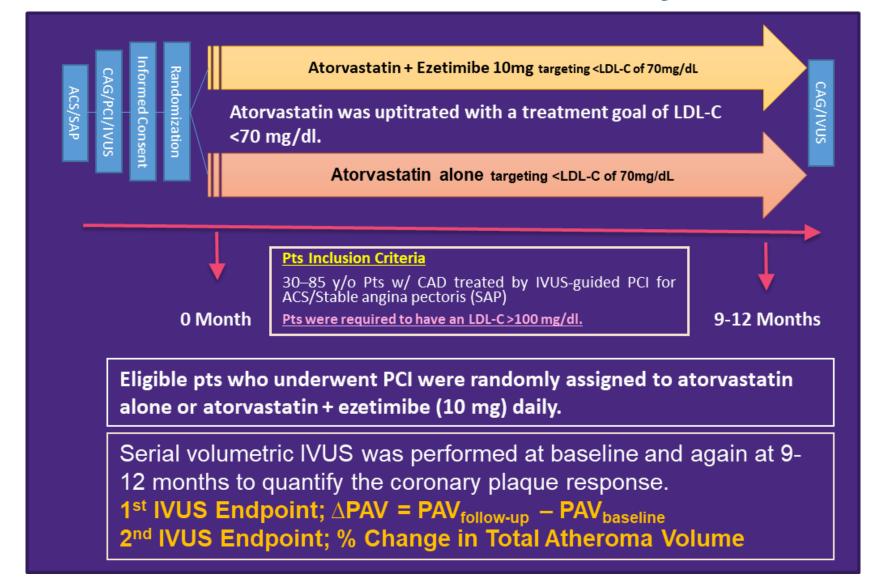
A 12-week treatment of additional ezetimibe in patients with dyslipidemia improved glucose metabolism and inflammatory markers


	n	Baseline	After treatment	% change	p value
Fasting Blood Glucose (mg/dL)	116	94.0 ± 23.8	94.3 ± 28.4	0.5 ± 14.7	NS
Fasting Insulin (µIU/mL)	102	12.7 ± 17.5	9.4 ± 8.2	-12.8 ± 9.8	p<0.05
HbA1c (%)	35	6.2 ± 1.0	5.9 ± 1.0	-3.4 ± 8.6	p<0.05
High sensitive C reactive protein (ng/mL)	76	601.8 ± 461.6	485.1 ± 366.9	-10.8 ± 36.8	p<0.01
High molecular weight adiponectin (µg/mL)					
Total	102	10.8 ± 5.9	11.8 ± 6.8	13.4 ± 47.5	p<0.01
Male	42	8.6 ± 4.7	8.9 ± 4.8	5.4 ± 26.2	NS
Female	60	12.4 ± 6.2	13.8 ± 7.2	19.2 ± 57.6	p < 0.01

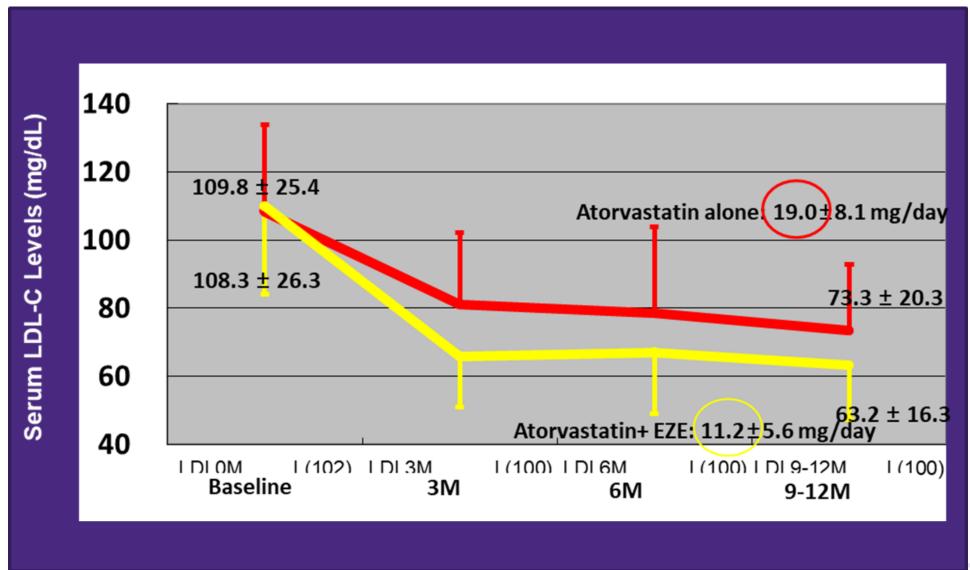
Limitations of high-dose statin monotherapy


Limitations of high-dose statins


Risk of diabetes mellitus


Limitations of high-dose statins

Risk of SAMS

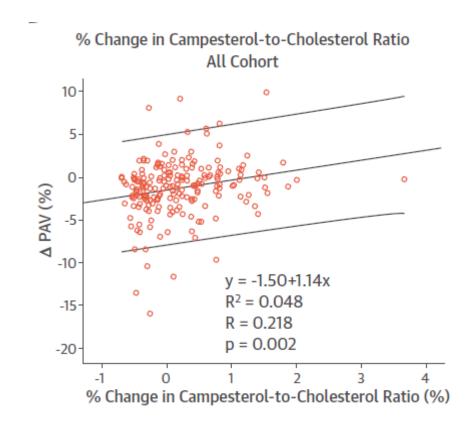


PRECISE-IVUS Study

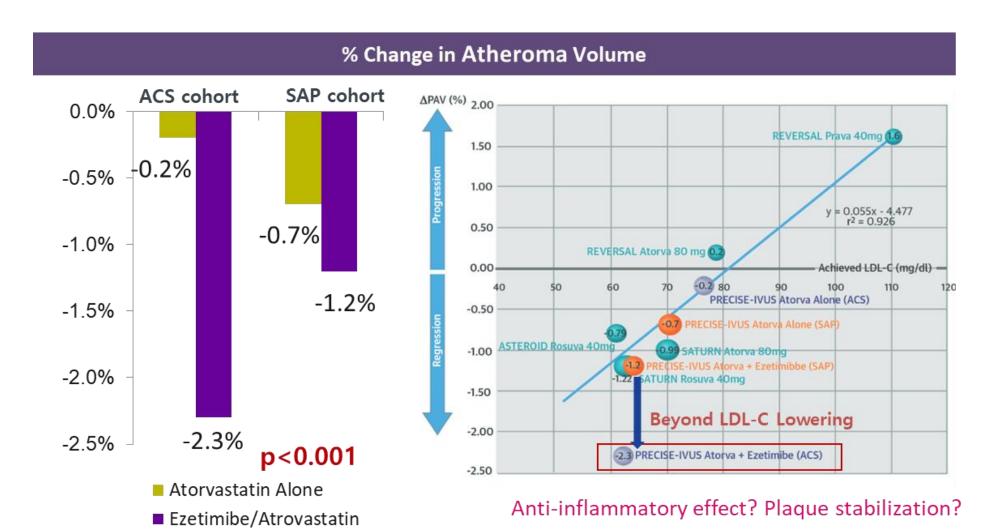
Changes in LDL-C

Coronary Plaque Regression

	<u>Baseline</u>			9–12 Months Follow-Up		
	LZ Group (n = 100)	L Group (n = 102)	p Value	LZ Group (n = 100)	L Group (n = 102)	p Value
Plaque volume (mm³)	73 (38-117)	76 (46-128)	0.5	70 (35-107)	77 (45-126)	0.2

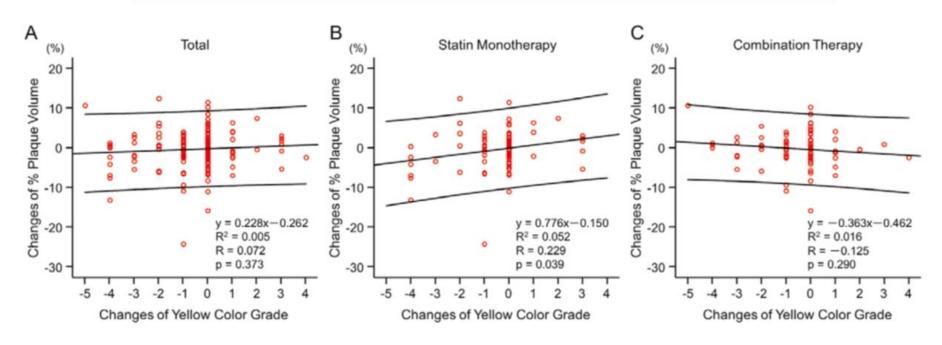

For superiority, the absolute change in PAV decreased by -1.4% in the Atorvastatin +EZE group and by -0.3% in the Atorvastatin group. A significantly greater percentage of pts in the Atorvastatin +EZE group showed coronary plaque regression (78% vs. 58%).

Lesion length (mm)	10.1 (5.6-14.6)	12.4 (7.5-16.0)	0.11	9.7 (5.8-1	9.7 (5.8-14.5) 11.9 (7.2		-15.9)	0.10
		<u>Change</u>						
	LZ Group (n = 100)	p Value With Baseline	e L Group (n = 102)		p Value With Baseline		1	alue n Groups
Plaque volume (mm³)	-3.9 (-10.6-0.0)	<0.001	-1.0 (-6.8-5.7) 0.4		0.4		0.0	001
PAV (%)	-1.4 (-3.40.1)	<0.001	-0.3	(-1.9-0.9)		0.03	0.0	001
ACS cohort	-2.3 (-3.70.5)	<0.001	-0.2	(-1.3-0.5)		0.2	<0.	001
SAP cohort	-1.2 (-2.20.1)	0.001	-0.7	(-2.3-1.1)	0.08		0	.2
TAV _{norm} (mm³)	-5.3 (-12.4-0.1)	<0.001	-1.2	(-5.7-3.3)		0.1	<0.0	001
Vessel volume (mm³)	-4.1 (-12.6-3.1)	0.001	-0.6 (-	11.8-10.6)		0.9	0.	04


Changes in laboratory data

Percent	Change	(%)
---------	--------	-----

	LZ Group (n = 100)	L Group (n = 102)	p Value
TC, mg/dl	-25 ± 17	-18 ± 18	0.006
HDL-C, mg/dl	14 ± 26	11 ± 25	0.5
LDL-C, mg/dl	-40 ± 18	-29 ± 24	< 0.001
Triglycerides, mg/dl	-14 (-33 to 18)	-9 (-33 to 25)	0.3
Lipoprotein (a), mg/dl	-12 (-42 to 17)	-20 (-50 to 7)	0.1
Apolipoprotein A-I, mg/dl	15 ± 21	11 ± 17	0.2
Apolipoprotein B, mg/dl	-34 ± 16	-26 ± 20	0.001
Free fatty acid, μEq/l	-7 (-50 to 59)	-11 (-56 to 68)	0.8
MDA-LDL, U/l	-27.7 ± 27.0	-15.3 ± 38.5	0.1
RLP-C, mg/dl	-28 (-48 to 3)	-17 (-37 to 17)	0.02
sdLDL-C, mg/dl	-28.5 ± 33.5	-21.4 ± 35.0	0.2
Insulin, µIU/ml	15 (-33 to 73)	22 (-18 to 51)	0.99
HbA _{1c} , %	3 (-2 to 5)	2 (-4 to 4)	0.2
Total adiponectin, μg/ml	28 (-4 to 64)	19 (-5 to 63)	0.4
HMW adiponectin, μg/ml	24 (-25 to 74)	19 (-25 to 86)	0.9
Lathosterol, μg/ml	-15 (-53 to 45)	-53 (-71 to -22)	< 0.001
Campesterol, μg/ml	-46 (-61 to -30)	22 (-5 to 61)	< 0.001
Sitosterol, µg/ml	-39 (-53 to -20)	31 (-6 to 67)	< 0.001
Lathosterol, μg/100 mg TC	14 (-28 to 68)	-36 (-57 to 2)	< 0.001
Campesterol, μg/100 mg TC	-30 (-43 to -10)	53 (24 to 82)	< 0.001
Sitosterol, µg/100 mg TC	-15 (-34 to 9)	60 (27 to 106)	< 0.001
Campesterol/lathosterol	-40 (-66 to 10)	167 (48 to 267)	< 0.001
hs-CRP, mg/l	-89 (-97 to -59)	-86 (-95 to -70)	0.9


Does ezetimibe help stabilize coronary plaque?

Effect of Ezetimibe on Stabilization and Regression of Intracoronary Plaque

The **ZIPANGU** Study

Conclusions: Compared with statin monotherapy, combination therapy with ezetimibe further reduced LDL-C levels. Significant plaque volume reduction was achieved by the combination therapy, but not statin monotherapy; however, plaque stabilization was similarly achieved by both therapies. Furthermore, reduction in plaque volume was dependent on reduction in LDL-C, regardless of whether it was achieved by statin alone or statin plus ezetimibe.

Effects of ezetimibe

- Additional lowering of LDL cholesterol
- Improvement of other cholesterols (HDL, ApoB, postprandial TG)
- Improves glucose metabolism, inflammation
- Plaque volume regression

- Statin dose-sparing effect
- → Lower adverse events

Conclusion

1 LDL-C is the first goal for preventing future CV events

The association between LDL-C and CVD has been confirmed through various clinical trials, and guidelines have called for lower LDL-C targets. Recent guidelines set LDL-C target at 55 mg/dl for very high-risk patients. In patients with recurrent events within 2 years, it is recommended to target a level of 40 mg/dL.

2 LDL-C – "The Lower, the Better", and its also SAFE

Various clinical trials, such as IMPROVE-IT and TST, have shown that lower LDL-C can prevent occurrence of cardiovascular disease.

3 Combination therapy with Ezetimibe benefits patients

It has been shown in several clinical trials that use of ezetimibe helps reduce plaque, and LDL-C targets can be reached more easily, showing several advantages for high-risk patients.

Thank you