The Interplay of Bleeding Risk and Treatment Strategies in Elderly ACS/PCI patients

Pannipa Suwannasom, MD, PhD Division of Cardiology, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand

Disclosure

• I have nothing to disclose

Risk Factors for Thrombotic and Bleeding Events in Elderly Patients

Capranzano and Angiolillo. J Am Coll Cardiol Intv. 2021;14(7):723-38.

PREdicting bleeding Complications In patients undergoing Stent implantation and subsEquent Dual Anti Platelet Therapy

VS.

Proportion of HBR patients by each ARC-HBR criterion

Chiang Mai University PCI database

Minor criteria Major criteria Non-defer Sx 0.0 TIA 4.6 Spontaneous bleeding 0.0 Bleeding diathesis 0.0 **NSAID** or steriods 1.0 Stroke < 6 months 1.5 Prior stroke/ICH 0.5 Malignancy 0.5 Hb 11.0-12.9 34.3 Liver cirrhosis 1.5 Low platelet count 1.0 eGFR 30-59 27.3 50.5 Hb < 11 eGFR < 3024.2 \geq 75 years 46.5 OAC use 5.6 100 20 20 40 60 80 40 60 80 100 0 **Proportion of HBR patients (%) Proportion of HBR patients (%)**

TCTAP 2022

CORONARY INTERVENTIONS

Validation of the Academic Research Consortium for High Bleeding Risk (ARC-HBR) criteria in patients undergoing percutaneous coronary intervention and comparison with contemporary bleeding risk scores

Ueki Y, et al. EuroIntervention 2020;16:371-379.

OPRECISEDAPT

Home

10 15

ISCHAEMIA

_

ARD -1.41%

P= 0.48

Myocardial infarction,

definite stent thrombosis,

stroke or target vessel revascularization

Disclaimer About **Contact Us**

Score Calculated 57 12 months risk of TIMI major or minor Bleeding

> 4.14%

12 months risk of TIMI Major Bleeding

> 2.06%

In patients with high PRECISE-DAPT score (Score>=25) a short DAPT (3-6

months) as compared with a long DAPT (12-24 months) was associated with

lower TIMI major and minor bleeding and similar rate of the composite

A cut-off of the PRECISE-DAPT score ≥ 25 may be too low for elderly patients?

1,443 patients age ≥75 years with acute coronary syndromes (ACS) undergoing invasive management Patient > 74 years, AMI undergoing PCI were randomized to either prasugrel 5 mg or clipidogrel 75 mg complex PCI (3) was performed in 605 patients (42%

Montalto C, et al. J Am Coll Cardiol. 2019 Jul 9;74(1):161-162

ROC between ARC-HBR and PRECISE-DAPT

- The ARC-HBR criteria demonstrates a better <u>discrimination of cardiac death</u> than PRECISE-DAPT in Thai patients.
 - Due to small size of the patients and single center study, the results should be cautiously interpreted.

Bleeding avoidance strategies in PCI

Capodanno D, et al. Nat Rev Cardiol. 2021 Aug 23.

High Bleeding Risk Trial Design

Randomized drug trials

WOEST ISAR-TRIPLE PIONEER-AF PCI RE-DUAL PCI AUGUSTUS ENTRUST-AF PCI SAFE-A COBRA reduce Background Rx: PCI

MASTER DAPT TARGET SAFE Background Rx: DP-DES, BP-DES

Randomized device trials

LEADERS FREE ZEUS-HBR SENIOR* ONYX ONE DEBUT BIOFLOW-DAPT[†] COMPARE 60/80 [†]

Background Rx: 1-month DAPT

Randomized strategy trials

COBRA REDUCE

Patients chronic needs for OAC

Randomized device + DAPT duration

Single-arm studies

LEADERS FREE II EVOLVE Short DAPT ONYX ONE Clear XIENCE 90 Short DAPT XIENCE 28 GLOBAL POEM MODEL U-SES

Background Rx: 1-month or 3-month DAPT DAPT shortening

*ACS 6-M DAPT; RED: trial in AF patients; BLUE: DAPT 3 months; BLACK: DAPT 1 month; †on-going trial

Capodanno D, et al. J Am Coll Cardiol 2020;76:1468-83

Trials of stent for patients at HBR on 1-M DAPT

Trial	Stent	HBR Patients (n)	Control arm	BARC 3-5 bleeding @ 1 Year Study vs. Control	1 outcomes Study vs. Control	Results
LEADER FREE (2015)	SS BioFreedom	2466	BMS Gazelle	7.2% vs. 7.3% 1.7 HBR/pt	CD/MI/def or prob ST at 390 days 9.4% vs. 12.9% ^{#,##}	PF DCS was superior to BMS
ZEUS-HBR (2016)	Endeavor ZES	828	BMS	3.5% vs. 5.0%	D, MI, TVR (MACE) at 12 months 22.6% vs. 29%##	E-ZES provides superior efficacy and safety as compared to BMS
LEADERS FREE II (2019)	SS BioFreedom	1203	LF BMS	7.2% vs. 7.2% 1.7 HBR/pt	1 efficacy EP: TLR 1 Y 7.2% vs. 9.2% 1 safety EP: CD, MI 1 Y 9.3% vs. 12.4%	superior 365-day clinical safety and effectiveness of DCS versus BMS
ONYX ONE* (2020)	ONYX ZES	1996	SS BioFreedom	4.9% vs. 4.4% 1.6 HBR/pt	CD/MI/def or prob ST at 1 Y : 17.1% vs. 16.9% [#]	ZES was noninferior to use of PF DCS
ONYX ONE CLEAR (2020)	ONYX ZES	1506	Performance goal 9.7%	4.0% 1.6 HBR/pt	CD/MI/def or prob ST at 1 Y 7% vs. 9.7%	Onyx ONE Clear met its primary endpoint
XIENCE Global 28 (2020)	Xience EES	960	Xience V Propensity score matching	BARC 2-5 4.9% vs. 5.9%, P=0.19 BARC 3-5 2.2 vs. 4.5%, p=0.01	All-cause death or all MI at 6 months# 3.5% vs. 4.3%	non-inferior ischemic outcomes
MASTER DAPT (2021)	Ultimaster Abbreviated 1-M DAPT	4434	Ultimaster Non-abbreviated DAPT	BARC 3-5 2.3% vs. 2.5%	Three ranked 1 EP: NACE 7.5% vs. 7.7; HR 0.97 (0.78-1.20) MACE 6.1% vs. 5.9; HR 1.02 (0.80-1.30) major or CRNMB 6.4% vs. 9.2% (0.68 (0.55- 0.85)	 Non-inferior NACE and MACE between abbre vs. non-abbre Abbreviated DAPT has a lower incidence of bleeding

**# test for non inferiority, ## test for superiority*

Algorithm for antithrombotic therapy in NTE-ACS patients

Very HBR is defined as recent bleeding in the past month and/or not deferrable planned surgery.

High bleeding risk & High thrombotic risk in one patient

<u>83 YO</u> woman presented with NSTEMI, denied CABG Known case DM type II on medication, Hx of NSTEMI 2019 ,<u>eGFR 35 ml/min</u>,<u>Hb 10.5 mg/dL</u>

Bleeding risk assessment: 1 major (Hb), 2 minor (age, eGFR)

Thrombotic risk assessment: DM, history of MI, multivessel CAD, CKD, 3 stents (ZES), 3 lesions, stent length > 60 mm, LM stenting

High Trombotic risk (class lla): Complex CAD and at least 1 criterion

Risk enhancers

- Diabetes mellitus requiring medication
- History of recurrent MI
- <u>Any multivessel CAD</u>
- Polyvascular disease (CAD plus PAD)
- Premature (<45 years) or accelerated (new lesion within a 2-year time frame) CAD
- Concomitanr systemic inflammatory disease (e.g HIV, SLE, chronic arthritis)
- <u>CKD with eGFR 15-59 mL/min/1.73 m²</u>

Technical aspects

- At least 3 stents implanted
- <u>At least 3 lesion treated</u>
- Total stent length > 60 mm
- History of complex revascularization
 - Left main
 - <u>bifurcation with ≥ 2 stents implanted</u>
 - Chronic total occlusion
 - stenting of last patent vessel
- History of stent thrombosis on antiplatelet treatement

Tailor management of HBR patients 6,641 patients for developing ARC-HBR trade-off model

Increased risk of both MI and/or ST and major bleeding

- Anemia
- Kidney insufficiency
- Current smoking
- Complex PCI procedure

Increased only BARC 3 to 5 bleeding

- Age \geq 65 years
- COPD
- Liver disease, cancer or planned surgery
- OAC at discharge

Increased only MI and Stent thrombosis

- DM treated with insulin or oral med
- STEMI or NSTEMI
- Use of BMS

	BARC types 3-5 bleed	ling	MI and/or ST		
Predictor	HR (95% CI)	P value	HR (95% CI)	P value	
Aged ≥65 y	1.50 (1.08-2.08)	.01	NA	NA	
Diabetes (requiring treatment with either insulin or oral medication)	NA	NA	1.56 (1.26-1.93)	<.001	
Prior MI	NA	NA	1.89 (1.52-2.35)	<.001	
Liver disease, cancer, or surgery ^a	1.63 (1.27-2.09)	.0001	NA	NA	
COPD	1.39 (1.05-1.83)	.02	NA	NA	
Current smoker	1.47 (1.08-1.99)	.01	1.48 (1.09-2.01)	.009	
NSTEMI or STEMI presentation	NA	NA	1.82 (1.46-2.25)	<.001	
Hemoglobin, g/dL					
≥13	1 [Reference]		1 [Reference]	.005	
11-12.9	1.69 (1.30-2.20)	<.001	1.27 (0.99-1.63)		
<11	3.99 (3.06-5.20)		1.50 (1.12-1.99)		
eGFR, mL/min					
≥60	1 [Reference]		1 [Reference]		
30-59	0.99 (0.79-1.24)	.02	1.30 (1.03-1.66)	.001	
<30	1.43 (1.04-1.96)		1.69 (1.20-2.37)		
Complex procedure ^b	1.32 (1.07-1.61)	.008	1.50 (1.21-1.85)	<.001	
Bare metal stent ^c	NA	NA	1.53 (1.23-1.89)	<.001	
OAC at discharge	2.00 (1.62-2.48)	<.001	NA	NA	
C statistic	0.68	NA	0.69	NA	
Validation: ARC-HBR ONYX-ONE 0.74 0.74					

Urban P, et al. JAMA Cardiol 2021 Apr 1;6(4):410-419

37% 🔳

DAPT strategies in elderly with ACS

the risk of bleeding in the elderly can be mitigated by strategies

Bleeding reduction strategies

- 1.Short DAPT: 1-, 3- or 6-month DAPT then aspirin (MASTER-DAPT)
- 2.P2Y12i monotherapy after brief DAPT: 3-month DAPT then single P2Y12i i.e ticagrelor or clopidogrel (TWILIGHT, TICO, STOPDAPT-2)
- > 3.P2Y12i de-escalation

Clopidogrel (n=500) vs. Ticagrelor or Prasugrel (n=502) in NSTEMI ≥ 70 years old

Primary bleeding outcome: PLATO major or minor bleeding **Co-Primary net clinical benefit:** All death, MI, stroke, major and minor bleeding

- Mean age 77 yr
- OAC 20%
- 95% of T/P arm received ticagrelor (n=475)

clopidogrel was associated with a significant 6% absolute reduction in bleeding events compared to standard treatment with ticagrelor or prasugrel and was non-inferior for ischemic events.

Gimbel M, et al. Lancet. 2020 Apr 25;395(10233):1374-1381

Ticagrelor vs. Clopidogrel in elderly patients with ACS

Insights From the SWEDEHEART Registry, n=15,005

		Clopidogrel Mean±SD/ median follow-up time death 2230 296±121/365 death, for bleeding 2427 290±125/365 1048 300±119/365 277 318±104/365 1344 322±99/365				Ticagrelor			
		N events	Mean±SD/ median follow-up time	Incidence rate (per 100 person- years)	N events	Mean±SD/ median follow-up time	Incidence rate (per 100 person- years)	IPTW-adjusted cause-specific hazard ratio (95% CI)*	IPTW-adjusted competing risk hazard ratio (95% CI)*
	Stroke, MI, death	2230	296±121/365	32.8	844	297±117/365	18.7	0.97 (0.88–1.06)	
	Stroke, MI, death, readmission for bleeding	2427	290±125/365	37.4	1058	288±123/365	24.2	1.03 (0.94–1.12)	—
	MI	1048	300±119/365	13.9	360	300±115/365	7.5	0.80 (0.70–0.92)	0.78 (0.68–0.90)
	Stroke	277	318±104/365	3.44	155	308±108/365	2.32	0.72 (0.56–0.93)	0.70 (0.54–0.91)
•	Death	1344	322±99/365	18.1	511	311±105/365	10.8	1.17 (1.03–1.32)	—
	Readmission for bleeding	388	314±107/365	4.86	333	300±114/365	6.90	1.48 (1.25–1.76)	1.45 (1.23–1.72)

- different benefit-risk ratio between ticagrelor and clopidogrel in elderly patients

20% \downarrow risk of new MI, 28% \downarrow risk of stroke

• Ticagrelor should be used with caution among patients ≥ 80 years

Szummer K, et al. Circulation. 2020;142:1700–1708

MASTER-DAPT: Schematic trial design

Smits P, et al. Circulation. 2021;144:1196–1211

Kaplan-Meier curves of NACE and MACCE at 11 months after randomization: MASTER-DAPT

net adverse clinical outcomes (NACE)

major adverse cardiac and cerebral events (MACCE)

NACE and MACCE did not differ with abbreviated vs. non-abbreviated APT regimens in patients with OAC indication or without OAC indication

Smits P, et al. Circulation. 2021;144:1196–1211

Kaplan-Meier curves of major or clinically relevant non-major bleeding at 11 months after randomization : MASTER-DAPT

Findings:

- BARC 2, 3, or 5 bleeding did not significantly differ in patients with OAC indication
- BARC was lower with abbreviated APT in patients without OAC indication

What Are the Clinical Implications?

 DAPT beyond 1 month in patients with or without an indication for OAC has no benefit and only increases bleeding risk.

STOPDAPT-2 ACS

1-month DAPT followed by clopidogrel monotherapy in ACS

P opulation	Intervention	Control	Outcomes	Time	
4136 pts. with ACS	1-month DAPT	12-month DAPT	Bleeding	1 year	
 Mean age 67 79% male 30% diabetes 56% STEMI 	1-month DAPT 1-month DAPT 1-month DAPT 11 months Clopidogrel alone		HR 0.46, CI95% 0.23-0.94	Primary analysis at 1 year post ACS	
 85% radial approach 97% IVUS or OCT 			Myocardial infarction	5-year follow-up planned	
	11 months Clopidogrel alone	12-month DAPT	HR 1.91, CI95% 1.06-3.44		
	CL 75	G	1 1-month DAPT worse		

Watanabe H, Hot line session. ESC Congress 2021

Ticagrelor Monotherapy After 3-month DAPT in Patients at High Bleeding Risk Undergoing PCI

A Prospective Analysis of the TWILIGHT Trial

Escaned J, et al. European Heart Journal (2021) 42, 4624–4634

Ticagrelor Monotherapy After 3-month DAPT in Patients at High Bleeding Risk Undergoing PCI

A Prospective Analysis of the TWILIGHT Trial

Escaned J, et al. European Heart Journal (2021) 42, 4624–4634

ELDERLY ACS trial

Trial design: Patients >74 years of age presenting with AMI and undergoing PCI were randomized in a 1:1 fashion to either prasugrel 5 mg daily or clopidogrel 75 mg daily. Patients were followed for 12.1 months.

Results

- Primary endpoint: Death/MI/stroke/CV rehospitalization/bleeding: prasugrel vs. clopidogrel: 17.0% vs. 16.6%, p = 0.96
- Stent thrombosis: 0.7% vs. 1.9%, p = 0.06
- All BARC 2, 3, 5 bleeding: 4.1% vs. 2.7%, p = 0.18

Conclusions

- Half-dose prasugrel is not superior to regular-dose clopidogrel in reducing ischemic events among elderly (age >74 years; mean 80.6 years) patients undergoing PCI for ACS
- · The trial was terminated early due to futility

TCTAP 2022

Post-hoc analysis of ELDERLY ACS trial

 Prasugrel 5 mg was significantly superior to clopidogrel in reducing thrombotic events in the first month after ACS, whereas clopidogrel was superior to prasugrel 5 mg in reducing late bleedings (31–365 days).

Crimi G, et al. J Am Heart Assoc. 2019;8: e010956.

JAMA Cardiology | Brief Report

Optimal Antithrombotic Regimens for Patients With Atrial Fibrillation Undergoing Percutaneous Coronary Intervention An Updated Network Meta-analysis

Five randomized studies were included (N = 11 542; WOEST, PIONEER AF-PCI, RE-DUAL PCI, AUGUSTUS, ENTRUST-AF PCI).

Primary safety outcome: TIMI major bleeding

Primary efficacy outcome:

- An antithrombotic regimen of VKA plus DAPT should generally be avoided
- NOAC plus a P2Y12 inhibitor without aspirin may be the most favorable treatment option

Post-procedural management of patients with AF and ACS/PCI

Recommendations for AF patients with ACS

In AF patients with ACS undergoing an uncomplicated PCI, early cessation (≤ 1 week) of aspirin and continuation of dual therapy with an OAC and a P2Y₁₂ inhibitor (preferably clopidogrel) for up to 12 months is recommended if the risk of stent thrombosis^d is low or if concerns about bleeding risk^e prevail over concerns about risk of stent thrombosis,^d irrespective of the type of stent used.^{1090,1092–1095} Triple therapy with aspirin, clopidogrel, and an OAC^f for longer than 1 week after an ACS should be considered when risk of stent thrombosis^d outweighs the bleeding risk,^e with the total duration (≤ 1 month) decided according to assessment of these risks, and the treatment plan should be clearly specified at hospital discharge.

2020 ESC Guidelines for the diagnosis and management of atrial fibrillation, European Heart Journal (2020) 42, 373-498

Α

С

TCT AP 2022

lla

A novel risk score to identify the need for TAT

post hoc analysis of the RE-DUAL PCI trial, significant reduction in MI/ST with TAT in patients with a risk score >5

Thrombotic risk in AF-PCI patients					
	Score				
	LVEF <30%	+3			
	LVEF 30-50%	+1			
Ð	3-vessel disease	+2	3		
SEI SEI	MI as indication for index PCI	+2			
	History of peripheral artery disease	+2			
合 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Platelet count ≥400 *10 ⁹ /L	+3			
GP	eGFR ≥90 ml/min	-1			

Zwart B, et al. EuroIntervention 2022;17-online publish-ahead-of-print February 2022

Conclusion

Elderly patients with ACS are at higher **Coronary Revascularization** risk of both atherothrombotic events and Invasive management should be preferred bleeding. regardless of age in STEMI and Tn positive NSTE-ACS ACS prefer radial access • Risk assessment is important, elderly prefer a minimal anticoagulation protocol in older **Minimize Bleeding Risk** (e.g: avoid routine parenteral antithrombotic ACS patients should be evaluated for adults & Optimise DAPT therapy) ARC-HBR criteria before the procedure. a culprit-only PCI approach should be use proton pump inhibitors preferred in most cases use either the ARC-HBR definition or A case-by-case decision based not only PRECISE-DAPT score to measure bleeding risk and calibrate DAPT duration and intensity on the assessment of the bleeding risk accordingly consider DAPT de-escalation: the ischemic but also of the ischaemic risk. benefit of prasugrel 5 mg is prevalent in the first 30 days, while bleeding reduction with • The risk of bleeding in the elderly can be clopidogrel is higher afterwards mitigated by DAPT strategies. At discharge HBR trade-off model would help for DAPT valvular heart disease: screen for significant valvulopathies and recommend patients to centers with a transcatheter structural heart strategies in HBR patients. valve program if at high surgical risk risk factors: optimize at individualized target drug therapy: check for interaction and side-effects Short duration of DAPT as default cardiac rehabilitation programme: should be considered before home strategies in elderly patients discharge

TCTAP 2022

TCTAP 2022