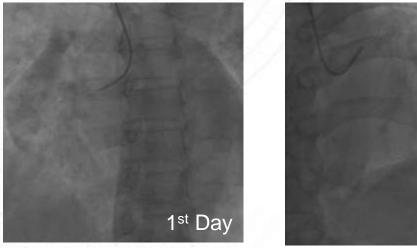
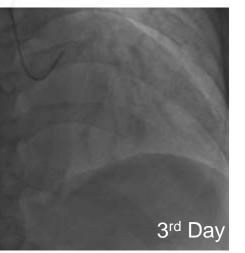
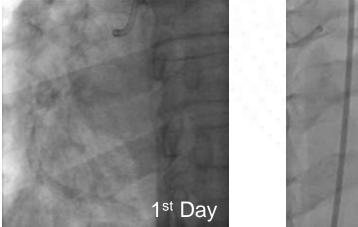
CTO Revascularization 2022: Guidelines and Concept Change

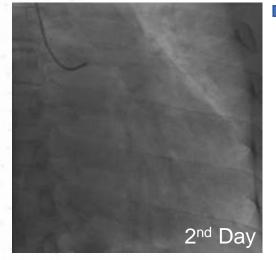
Jung-Min Ahn, MD


Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

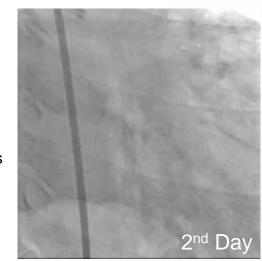

Disclosure


- I am FFR-Believer and IVUS-Holic.
- I have been a Complex PCI Interventionist including LM and bifurcation.
- I have been an Antegrade Only CTO Interventionist for a long time.
- I am recently trying retrograde approach.


My CTO Case (1) : Go Antegrade, Only !


63 YO/M, EF= 18%, iCMP, on maximal HF management

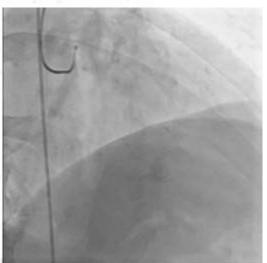
Staged PCI for 3 Days


Stent

pdRCA: Xience Alpine 4.0(38)+3.5(38)+3.0(38) dLCX: Xience Alpine 3.25(18)+2.75(38) mdLAD: Xience Alpine 3.5(18)+2.75(28) Balloon:

Tazuna 2.5(15), Nimbus NC 3.5(17), Ikazuchi 2.0(20), Raiden3 3.0(20), Emerge 2.5(20), Nimbus Salvo 3.0(17)

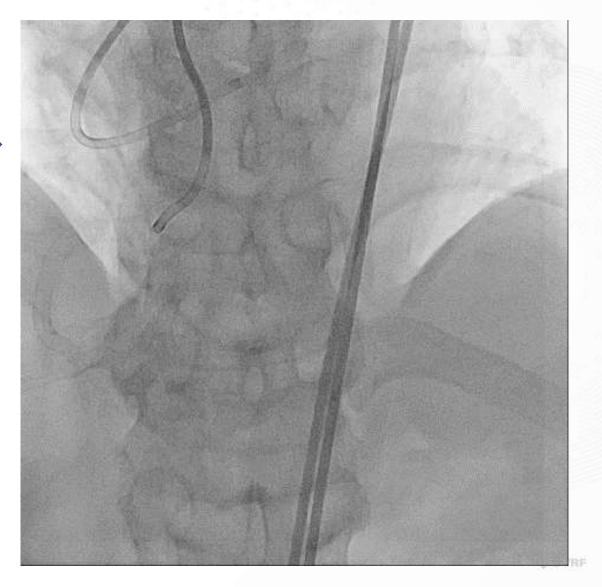
Contrast: 150+280+150, total 580 cc **Wire:** Fielder XT #4, BMW #3, Sion, Gaia2 with Corsair #3


Procedure time: 52m+46m+30m, total 2h8m

COMPLEX PCI 2022

My CTO Case (2) : Retrograde

65 YO/M, EF= 53%, Stable angina


Antegrade failure and Retrograde approach

Stent:

Xience Xpedition 3.5(48), Xience Xpedition 3.5(48), Xience Xpedition 3.0(48) Balloon:

Ryurei 1.5(15) NC Trek 2.5(15) Sapphire NC 3.5(15) Selethru NC 4.0(20) Selethru 5.0(10) **Contrast:** 450 cc **Wire:**

Fielder XT-R, Fielder XT, Sion #2, Gaia2 #3, SUOH 03, RG3 with Corsair, Caravel **Procedure time:** 2h 43m

Recommendations	Class ^a	Level ^b
Percutaneous revascularization of CTOs should be considered in patients with angina resistant to medical therapy or with a large area of documented ischaemia in the terri- tory of the occluded vessel. ^{629,659–663}	lla	B

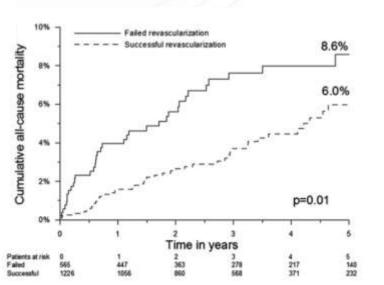
Class II	а	Weight of evidence/opinion is in fa of usefulness/efficacy.	vour	Should be considered	
Level of evidence B	and some many second	rived from a single randomized trial or large non-randomized		EUROCTO Randomize	d Trial and Registries

Treatment of CTO

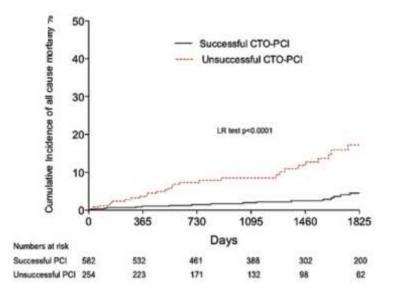
COF	R LOE	Recommendation
2b	B-R	In patients with suitable anatomy who have refractory angina on medical therapy, after treatment of non-CTO lesions, the benefit of PCI of a CTO to improve symptoms is uncertain.

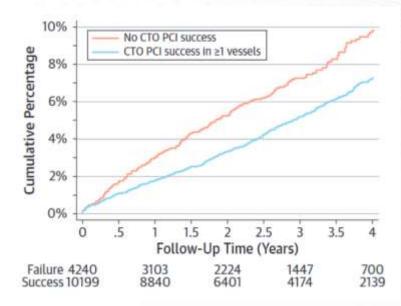
"Enthusiasm for treating these lesions was fueled by retrospective data suggesting improved outcomes for those patients who underwent successful recanalization compared with those who had failed. However, RCTs have not demonstrated improved function and have been equivocal with regard to symptoms."

CLASS 2b (WEAK) Benefit ≥ Risk Suggested phrases for writing recommendations:	LEVEL B-R	(Randomized)	EUROCTO and DECISION CTO
May/might be reasonable May/might be considered Usefulness/effectiveness is unknown/unclear/uncertain or not well- established	 Moderate-quality evidence‡ from 1 or more RCTs Meta-analyses of moderate-quality RCTs 		EXPLORE and REVASC

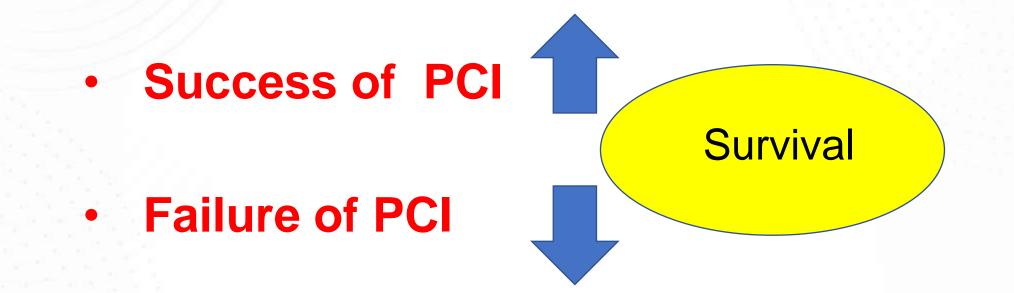

Success vs. Failure

	No. of		Duration of		Mortality, %			
Study	No. of Patients	Success	Duration of Follow-up, y	PCI Success	PCI Failure	Р		
Mid America Heart Institute58	2007	1491 (74.4%)	10	26.6	35.0	0.001		
British Columbia Cardiac Registry ⁵⁹	1458	1118 (76.7%)	1	10.0	19.0	< 0.001		
TOAST-GISE ²²	369	286 (77.5%)	6	1.1	3.6	0.13		


J Am Coll Cardiol. 2001;38:409 – 414 Circulation. 2001;104:II-415. Abstract J Am Coll Cardiol. 2003;41:1672–1678


Multinational CTO Registry

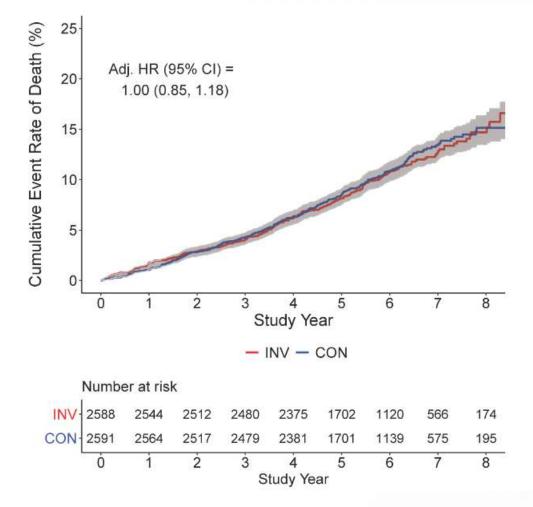
Single Center CTO Registry


U.K. Central Cardiac Audit Database

J Am Coll Cardiol Intv 2011;4:952-61

J Am Coll Cardiol Intv 2012;5:380 – 8

J Am Coll Cardiol 2014;64:235-43

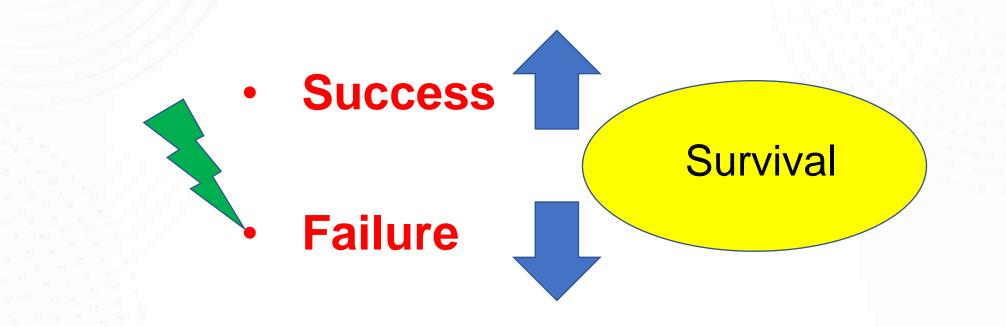


OMPLEX PCI 2022

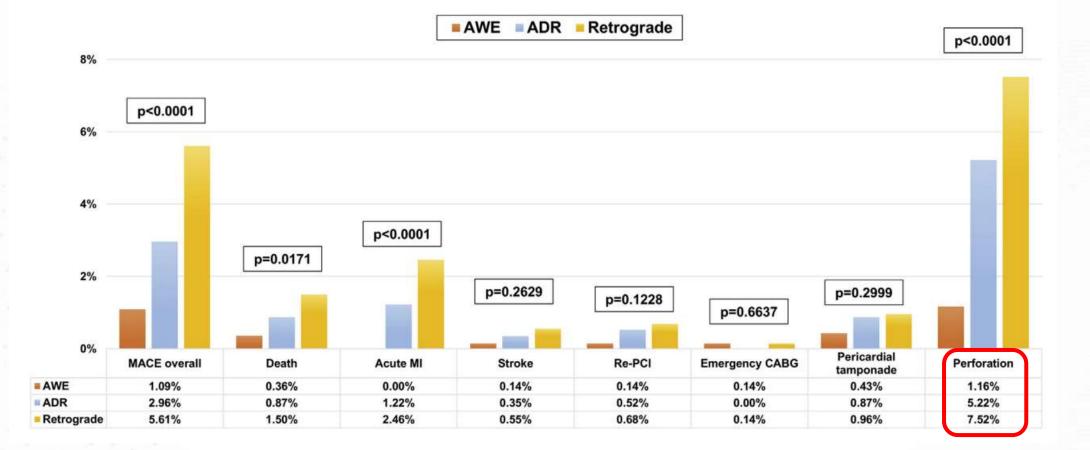
ISCHEMIA-EXTEND Follow-up Study

All Cause Mortality

Because these vessels are already occluded,


there is no rush to treat them, and medical

therapy / other options can be explored


https://doi.org/10.1161/CIRCULATIONAHA.122.062714Circulation. 2022;0

Courtesy of Ajay J. Kirtane

CTOs are inherently STABLE

PROGRESS CTO Registry: In-Hospital Complications

J Am Coll Cardiol Intv 2018;11:1325–35

Contemporary Series of CTO-PCI

Authors	Acronym	Study Period	Centers	Cases	Technical Success	Procedural Success	Overall MACE	Death	Acute MI	Stroke	TVR	Tamponade
Konstantinidis et al ⁸⁹	EURO-CTO registry	2008–2015	53	17626	85%		0.6%	0.2%		-	-	0.4%
Habara et al ⁸⁸	Japanese Retrograde Summit Registry	2012–2013	56	3229	2.	88%	0.5%	0.2%	0.1%	0.1%	-	0.3%
Tajti et al ⁶⁰	PROGRESS-CTO	2012-2017	20	3055	87%	85%	3.0%	0.3%	0.7%	0.1%	0.2%	0.5%
Suzuki et al ³¹	Japanese CTO- PCI Expert Registry	2014–2015	41	2846	90%	89%	<2%	0.2%	1.2%	0.2%	0.2%	0.4%
Maeremans et al ⁶¹	RECHARGE	2014–2015	17	1253	89%	86%	2.6%	0.2%	0.2%	2.2%	0.1%	1.3%
Wilson et al62	UK Hybrid	2012-2014	7	1156	90%		1.6%	0.0%	0.8%	0.4%	0.0%	0.7%
Sapontis et al ³	OPEN-CTO	2013-2017	12	1000	86%	85%	7.0%	0.9%	2.6%	0.0%	0.1%	-

14.5% of patients experienced at least 1 complication from OPEN CTO registry (Salisbury et al, JACC CV Intv 2019)

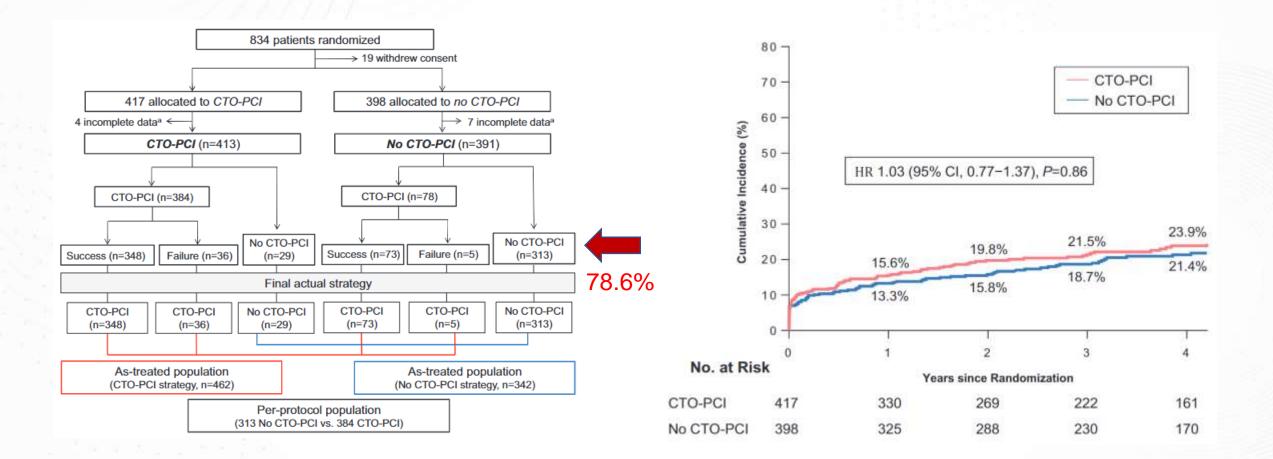
Emmanouil S. Brilakis, CTO-PCI A Global Expert Consensus Document, Circulation 2019

JACC: CARDIOVASCULAR INTERVENTIONS © 2017 PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION VOL. 10, NO. 15, 2017 ISSN 1936-8798/\$56.00 http://dx.0ol.org/10.1016/j.jcin.2017.06.053

EDITORIAL COMMENT

Thousand Registries Are Not Worth a Randomized Trial

Also True for Chronic Total Occlusions?*

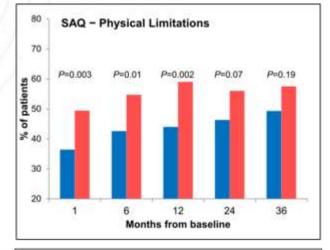

Carlo Di Mario, MD, PHD, ab Carlotta Sorini Dini, MD, Gerald S. Werner, MD, PHD

The generally accepted principle is that registries complement the information provided by randomized trials, but only the rigor of the randomization process can eliminate the confounding factors, including the placebo effect, so frequent after interventional treatments, and ensure that true differences are present between conventional and novel therapies. Frequently, the large and significant differences observed in randomized trials lose some of their shine when applied to all-comers groups including suboptimal candidates for the tested therapies. complications than in this registry, DECISION CTO showed no difference in quality of life (QoL). In the OPEN-CTO (Outcomes, Patient Health Status, and Efficiency IN in Chronic Total Occlusion Hybrid

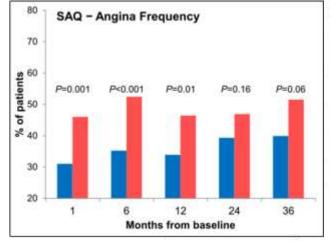
SEE PAGE 1523

Procedures) registry (5) in this issue of *JACC: Cardiovascular Interventions*, the stunning 90% technical success and 85% procedural success reported by the investigators are trimmed to 86% and 81%, respectively, by the core lab reviewing all angiograms. This is still a remarkable performance considering the

DECISION-CTO Trial


Lee SW, Lee PH, Ahn JM, Park SJ et al Circulation. 2019;139:1674–1683


DECISION-CTO Trial

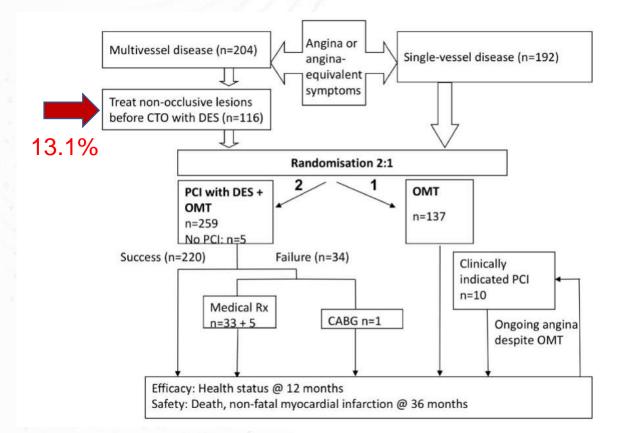

	CTO-PCI (n=417)	No CTO-PCI (n=398)	Crude HR (95% CI)	P Value
Primary end point: death, MI, stroke, or any revascularization	93 (22.3)	89 (22.4)*	1.03 (0.77–1.37)	0.86
Secondary end points				
Death	15 (3.6)	21 (5.3)	0.70 (0.36–1.37)	0.30
Cardiac cause	8 (1.9)	14 (3.5)	0.56 (0.24–1.34)	0.19
Noncardiac cause	7 (1.7)	7 (1.8)	0.99 (0.35–2.82)	0.99
Myocardial infarction	47 (11.3)	34 (8.5)	1.39 (0.90–2.15)	0.14
Periprocedural MI	41 (9.8)	30 (7.5)	1.37 (0.816–2.18)	0.19
Spontaneous MI	7 (1.7)	7 (1.8)	0.88 (0.30–2.57)	0.82
Stroke	6 (1.4)	10 (2.5)	0.61 (0.23–1.65)	0.33
Any revascularization	46 (11.0)	42 (10.6)	1.14 (0.75–1.73)	0.55
CTO vessel	33 (7.9)	30 (7.5)	1.13 (0.69–1.84)	0.63
Non-CTO vessel	29 (7.0)	23 (5.8)	1.34 (0.77–2.31)	0.30
Death, MI, or stroke	66 (15.8)	61 (15.3)	1.07 (0.75–1.51)	0.72
Cardiac death, MI, stroke, or any revascularization	86 (20.6)	82 (20.6)	1.02 (0.76–1.39)	0.88
Death, spontaneous MI, stroke, or any revascularization	64 (15.3)	69 (17.3)	0.91 (0.65–1.30)	0.59

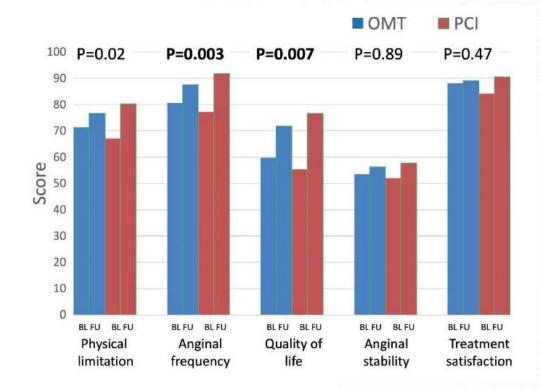
Lee SW, Lee PH, Ahn JM, Park SJ et al Circulation. 2019;139:1674–1683

DECISION-CTO Trial: Quality-of-Life Measures Over Time

A change of ≥ 8 , ≥ 20 , and ≥ 16 points for the SAQ-physical limitation, angina frequency, and QOL domain, respectively, was considered clinically meaningful.

CTO-PCI strategy

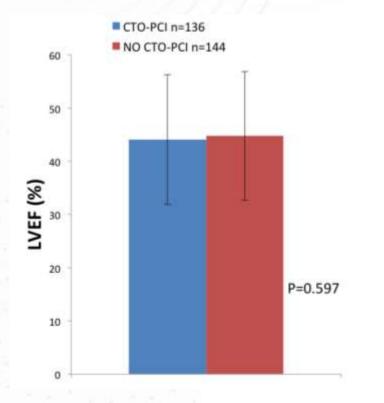

No CTO-PCI strategy


Lee SW, Lee PH, Ahn JM, Park SJ et al Circulation. 2019;139:1674–1683

EURO-CTO Trial

The change in health status assessed by SAQ between baseline and 12 months

European Heart Journal (2018) 39, 2484–2493

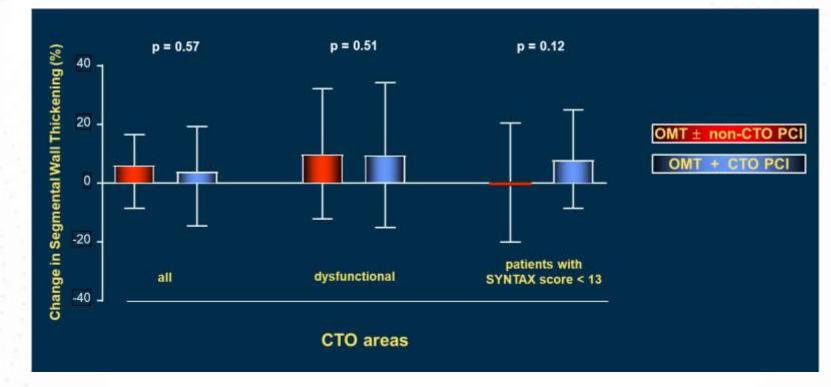

EURO-CTO Trial 36 Months FU

	OMT (N=137)	PCI (N=259)	P value
Safety events	4 (2.9)	13 (5.0)	0.32
Cardiovascular death	2 (1.5)	7 (2.7)	0.42
Non-fatal MI	2 (1.5)	6 (2.3)	0.56
Ischemia-driven revascularization	25 (18.2)	19 (7.3)	0.0035
Cerebrovascular event	1 (0.7)	5 (1.9)	0.27
Stent thrombosis	0	1 (0.4)	
All cause death	3 (2.2)	14 (5.4)	0.14

TCT 2019

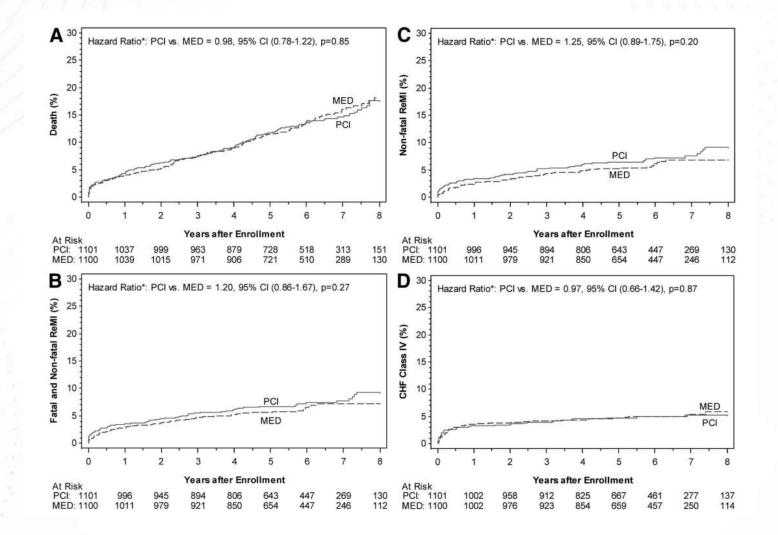
EXPLORE: MRI-Assessed LVEF at 4 months

280 STEMI pts with CTO randomized: CTO PCI (73% success) vs. no CTO PCI


	CTO PCI	No CTO PCI	
	(n = 148)	(n = 154)	p Value
Major adverse cardiac events			
Cardiac death	4 (2.7)	0 (0.0)	0.056
Myocardial infarction	5 (3.4)	3 (1.9)	0.49
Periprocedural*	4 (2.7)	1 (0.6)	1975.7
Spontaneous or recurrent	2 (1.4)	2 (1.3)	-
CABG operation	(i=s)	1 (0.6)	-
MACE	8 (5.4)	4 (2.6)	0.25

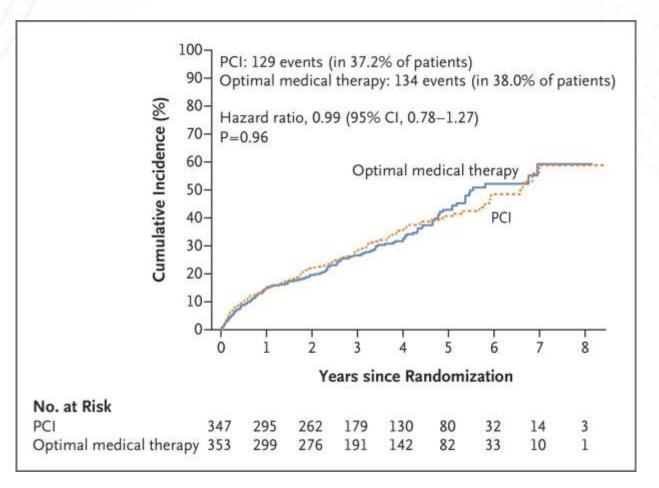
J Am Coll Cardiol 2016;68:1622–32

REVASC: Change in Segmental Wall Thickening at 6 Mo


205 CTO patients randomized to CTO PCI vs. no CTO PCI (no CTO PCI group included 60% non-CTO PCI) Mean EF 54.7% vs. 59.6%

Baseline SYNTAX Score 14 vs. 16; rSS 2 vs. 11

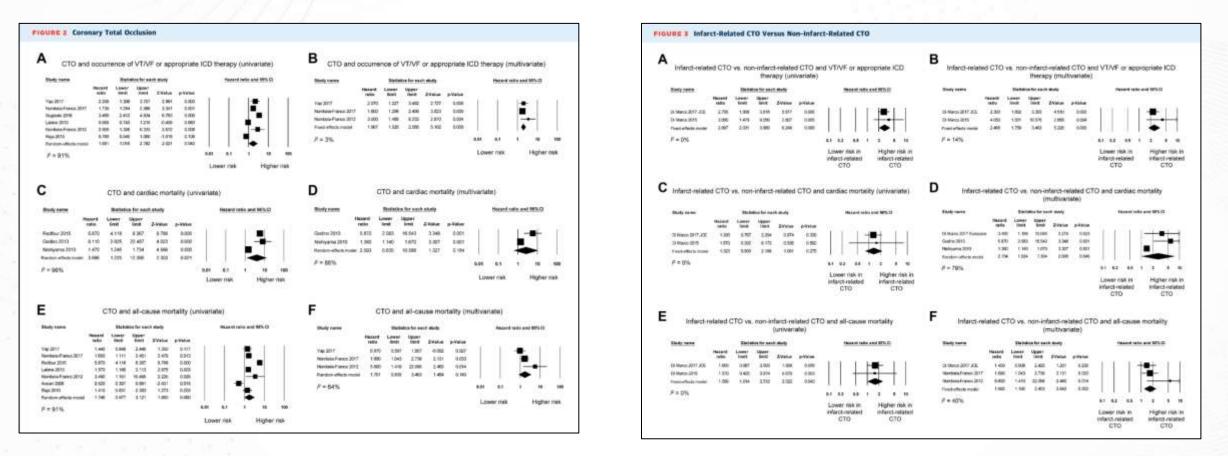
J Am Coll Cardiol Intv 2018;11:1982-91


OAT Trial: PCI vs. OMT for IRA TO >24 hours

COMPLEX PCI 2022

Circulation. 2011;124:2320-2328

REVIVED-BCIS2: PCI vs. OMT in iCMP



N Engl J Med 2022; 387:1351-1360

CVRF

Impact of CTO on Arrhythmic and Mortality Outcomes

CTOstatus and the occurrence of VT/VF or appropriate ICD therapy: Metaanalysis from 17 studies in 54,594 patients.

From current data, it is not clear that revascularization has an impact on the outcome of patients with CTOs.

PLEX PCI 2022

J Am Coll Cardiol EP 2018;4:1214-23

Treatment of CTO

COF	R LOE	Recommendation
2b	B-R	In patients with suitable anatomy who have refractory angina on medical therapy, after treatment of non-CTO lesions, the benefit of PCI of a CTO to improve symptoms is uncertain.

"Enthusiasm for treating these lesions was fueled by retrospective data suggesting improved outcomes for those patients who underwent successful recanalization compared with those who had failed. However, RCTs have not demonstrated improved function and have been equivocal with regard to symptoms."

CLASS 2b (WEAK) Benefit ≥ Risk Suggested phrases for writing recommendations:	LEVEL B-R	(Randomized)	EUROCTO and DECISION CTO
May/might be reasonable May/might be considered Usefulness/effectiveness is unknown/unclear/uncertain or not well- established	 Moderate-quality evidence‡ from 1 or more RCTs Meta-analyses of moderate-quality RCTs 		EXPLORE and REVASC

The IMPACTOR-CTO Trial

39 patients in the PCI and 33 patients in OMT arms with Isolated RCA CTO

At 12 months

PCI group

(n=39)

45

45; 70) *

.75

(50; 75) *

-51

(41:67)

50

(45:55) *

45

(40; 50) *

63

(50; 75) *

100

(66: 100) *

52

(48: 60) *

+0.01

+0.01

0.02

-0.01

0.01

+0.01

+0.01

OMT

group

(~=33)

40

(30:45)

25

(25:50)

41

(32;51)

40

(20:50)

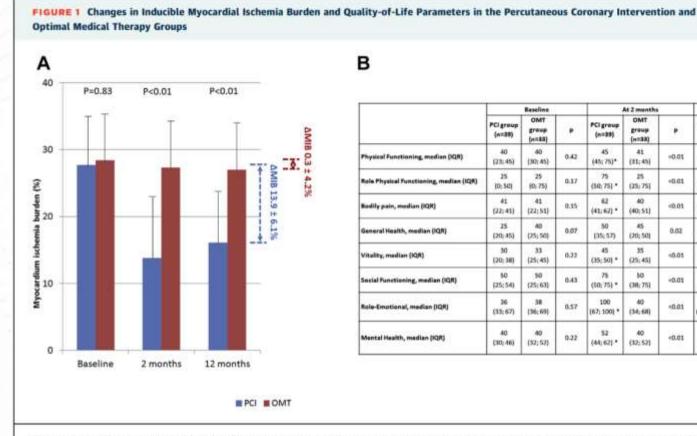
\$3

(25:40)

50

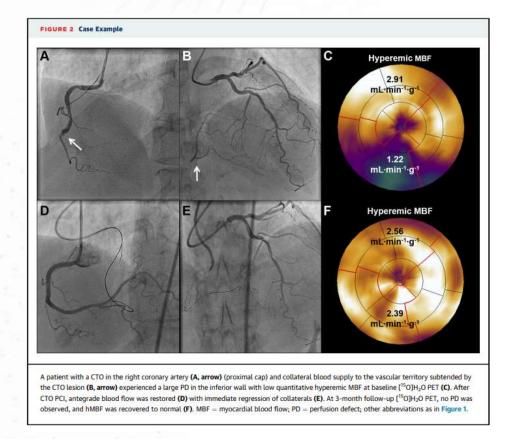
(37) 63)

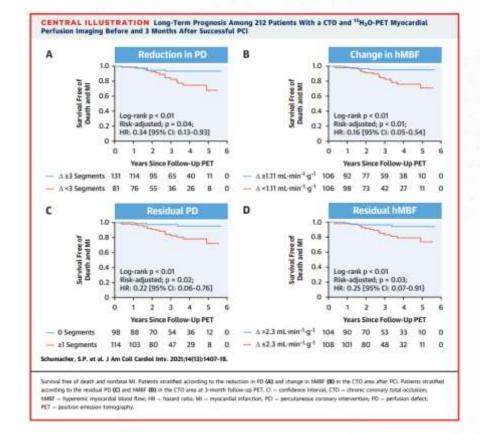
67


(33;67)

40

(32) 400


0.01


<0.01

(A) Inducible myocardial ischemia burden (MIB) at baseline and 2 and 12 months. (B) Short Form-36 Health Survey parameters at baseline and 2 and 12 months. *In comparison with baseline values (p < 0.05). IQR = interquartile range; OMT = optimal medical therapy; PCI = percutaneous coronary intervention.

Ischemic Burden Reduction and Long-term Outcomes After CTO PCI

Patients with extensive ischemic burden reduction and no residual ischemia after CTO PCI had lower rates of All-Cause Death and Nonfatal MI

J Am Coll Cardiol Intv 2021;14:1407-18

Ongoing Randomized Trials

ISCHEMIA-CTO Trial (NCT03563417)

Cohort A (N=1200)

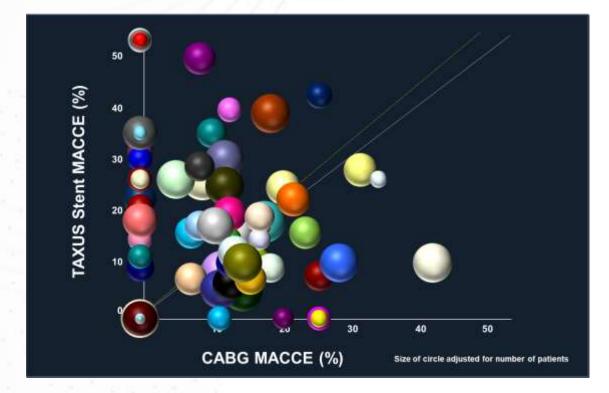
- Population Asymptomatic (CCS < 2 and SAQ QoL>60) patients with myocardial ischemia (≥10%) in a territory supplied by CTO
- Primary Endpoint: MACCE at 5 years

Cohort B (N=360)

- Population Symptomatic patients (CCS class ≥ 2 and/or SAQ QoL score≤60 after treating non-CTO lesions and after OMT) with *myocardial ischemia* (≥ 5%) *in a territory supplied a CTO*
- Primary Endpoint: Quality of Life, SAQ at 6 months

NOBLE-CTO Trial (NCT03392415)

Randomized registry with option of crossover after 6months


Primary Outcome Measures (N=2000)

- All-cause mortality with minimum 6 months follow-up
- Quality of life assessment (SF-12v2) at: 6 months

Inclusion Criteria

- ≥1 CTO lesion amenable to PCI.
- Stable and stabilized coronary artery disease
- Symptoms and/or signs of reversible perfusion defect and/or angiographic/echocardiographic indication of reversible ischemia.
- CTO lesion in a major coronary vessel supplying a significant myocardial territory (vessel diameter usually ≥3mm).

Variability in Practice

New York State Database: CTO PCI

7/2009 - 6/2012: 4030 (3.1%) CTO PCI procedures with 61.3% success

	Estimate	Standard Error	Adjusted Odds Ratio (95% CI)	P Value
Intercept	2.5109	0.3317		< 0.0001
Age by 10	-0.1098	0.0307	0.90 (0.84, 0.95)	0.0003
Ejection fraction <20%	-0.9714	0.3051	0.38 (0.21, 0.69)	0.0015
Previous PCIs	-0.2606	0.0712	0.77 (0.67, 0.89)	0.0003
Previous CABG surgery	-0.4488	0.0920	0.64 (0.53, 0.76)	< 0.0001
Carotid/cerebrovascular disease	-0.2987	0.1215	0.74 (0.58, 0.94)	0.0140
CTO lesion location				
Right coronary artery	-0.4057	0.0814	0.67 (0.57, 0.78)	< 0.0001
Left circumflex artery	-0.3480	0.0924	0.71 (0.59, 0.85)	0.0002
LAD artery and others*			Reference	
CTO PCIs only	-0.5192	0.0707	0.59 (0.52, 0.68)	< 0.0001
Operator CTO PCI volume per year (quartiles	a)			
Q1: <4	-0.8875	0.2657	0.41 (0.24, 0.69)	0.0008
02: 4–8	-0.6958	0.2720	0.50 (0.29, 0.85)	0.0106
03: 9-47	-0.4204	0.2852	0.66 (0.38, 1.15)	0.1405
Q4: ≥48			Reference	1942

Highest volume quartile operators (48+) had >2X higher success than lowest 2 quartiles

From SYNTAX Trial

Hannan et al, Circ CV Intv 2016

Conclusion

- The data in favor of CTO PCI are entirely for symptom relief.
- The non-CTO, ischemia producing significant stenosis would be more relevant and safer target for symptom relief.
- The risks of CTO PCI are significantly higher, and need higher end skills to treat successfully, particularly retrograde approach.
- RCTs have not demonstrated improved function, and have been equivocal with regard to symptoms. Shared decision-making should inform treatment of patients with refractory angina despite GDMT with remaining CTO coronary lesion, with careful discussions of the limitations of treating these lesions, as well as the potential benefits.