MedTech Innovation 7 May 2023

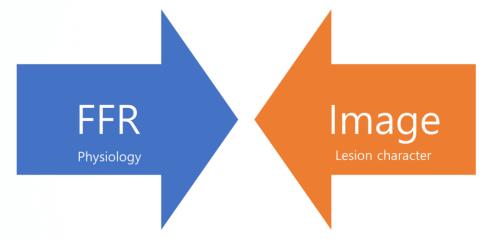
From CFD to Artificial Intelligence based OCT FFR

Jung-Joon Cha MD PhD FESC

Division of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine

28th TCTAP

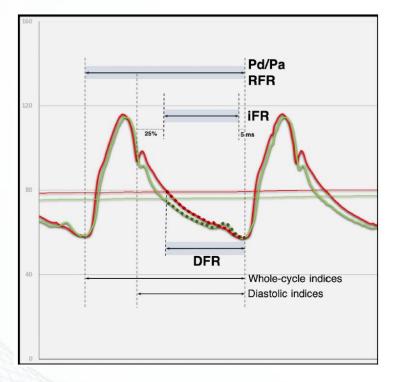
FFR-guided PCI

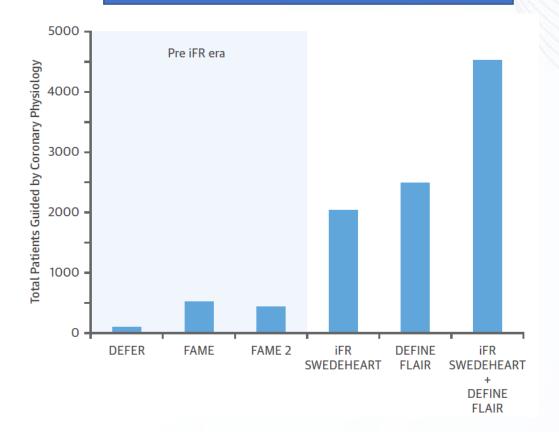

European Heart Journal (2010) 31, 2501-2555 doct0.10993/eurheant/ideq277 Guidelines on myocardial revascularization The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for	FFR-guided vs. Angio-guided	PCI + MT vs. MT		
Cardio-Thoracic Surgery (EACTS)			Class ^a	Level ^b
FFR-guided PCI is recommended for detection of ischaemia-r ischaemia is not available.	related lesion(s) when objective	evidence of vessel-related	I.	А

- Pressure ratio under hyperemia = Degree of flow reduction
- Degree of flow reduction = Degree of ischemia
- Relieving certain level of pressure gradient = Better clinical outcomes

Low FFR → ISCHEMIA → REVASCULARIZATION → Better prognosis

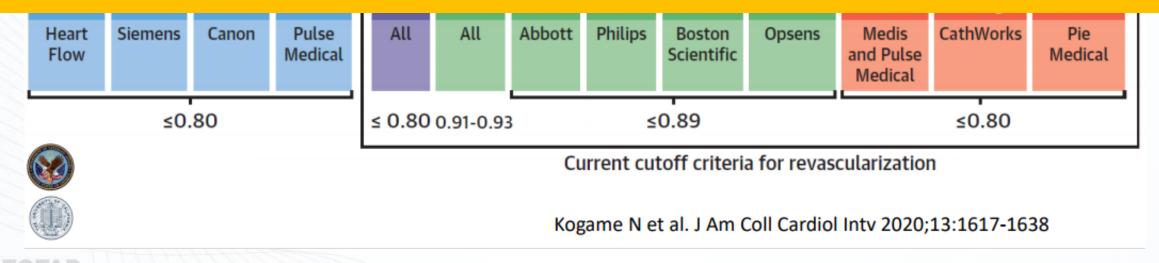
Several pitfalls


• Lack of anatomical information on atherosclerotic plaques

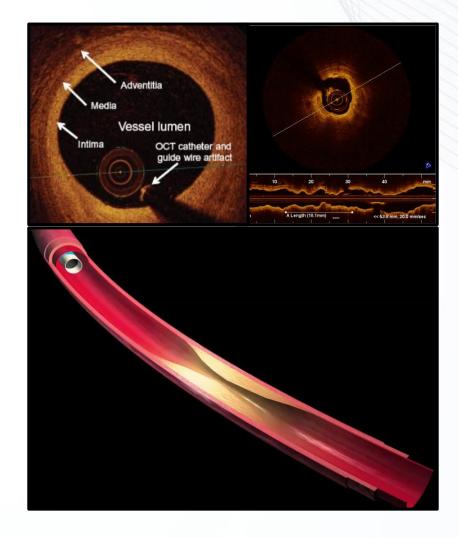

- Technical issue
 - Submaximal hyperemia
 - Guiding catheter
 - Pressure signal drift

STATE-OF-THE-ART REVIEW

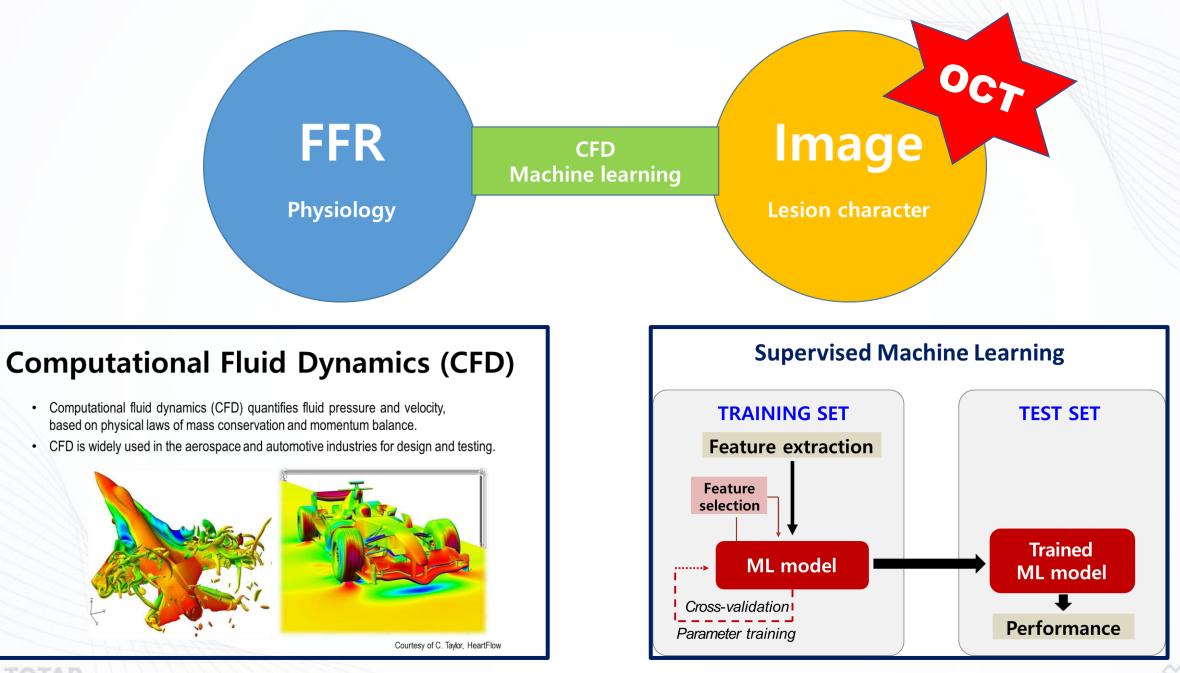
The Evolving Future of Instantaneous Wave-Free Ratio and Fractional Flow Reserve

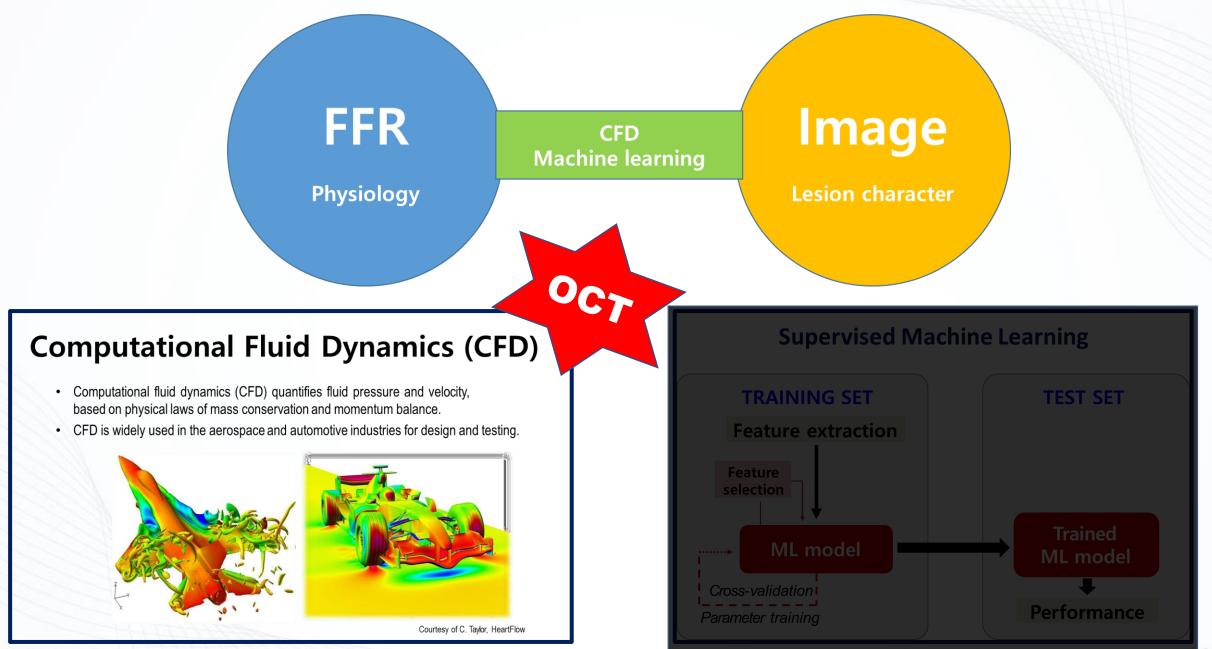

Non Hyperemic Method

Currently Available Physiological Assessment



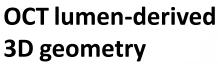
Association between physiology and lesion characteristics?




Classification and comparisons across the indices for functional assessment of coronary stenosis alternative to FFR

	INVA				SIVE						
	Pho	P ase-Spe			-Wire Based Whole Cardiac-Cycle		Coronary Angiography			Coronary Intravascular Imaging	
	iFR	dPR	DFR	Rest P _d /P _a	cFFR	RFR	QFR	vFFR	FFR _{angio}	IVUS _{FFR}	OCT _{FFR}
Agreed Cut-off	0.89	0.89	0.89	0.92	0.84 0.88	0.89	0.80	0.80	0.80	0.80	0.80
Hyperaemia required	No	No	No	No	Yes	No	No	No	No	No	No
Procedural Time	↓	¥	¥	≁	¥	¥	\mathbf{T}	$\mathbf{A}\mathbf{A}$	≁	↑	1 1
Patient's Discomfort	¥	¥	¥	¥	¥	¥	↓	¥	¥	¥	≁
Procedural Costs	¥	\mathbf{V}	¥	¥	¥	¥	$\mathbf{h}\mathbf{h}$	$\mathbf{A}\mathbf{A}$	$\psi\psi$	= or 个	= or 个
RCTs Available	Yes	No	No	No	No	No	No	No	No	No	No
Vendor-specific	Yes	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Pullback Analysis in Tandem Lesions	Yes	?	?	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Haemodynamic Dependence	?	?	?	Yes	No	?	?	?	?	No	No
Anatomic Detail	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes
Learning Curve	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes

Circ Cardiovasc Interv. 2020;13:e008487



CVRF

Coronary Physiologic Assessment and Imaging

Assessing Computational Fractional Flow Reserve From Optical Coherence Tomography in Patients With Intermediate Coronary Stenosis in the Left Anterior **Descending Artery**

- Blood flow simulation was performed by solving the ٠ Navier- Stokes equations (ADINA)
- Mean flow velocity ٠
 - obtain average velocity from TIMI frame count on ٠ coronary angiography (0.273 m/s)
- Mean blood pressure •
 - calculated by averaging the mean pressure • acquired at the guiding catheter tip in 37 lesions (retrospective group, 93.2 mmHg)

FFR = 0.85 $FFR_{OCT} = 0.88$ 105 102 100 97 94 92 89 mmHg

CFD based OCT-FFR

\rightarrow <u>FFR_{OCT} was calculated as the mean Pr at the outlet divided by the mean Pr at the inlet</u>

Table 1. Baseline Clinical Characteristics

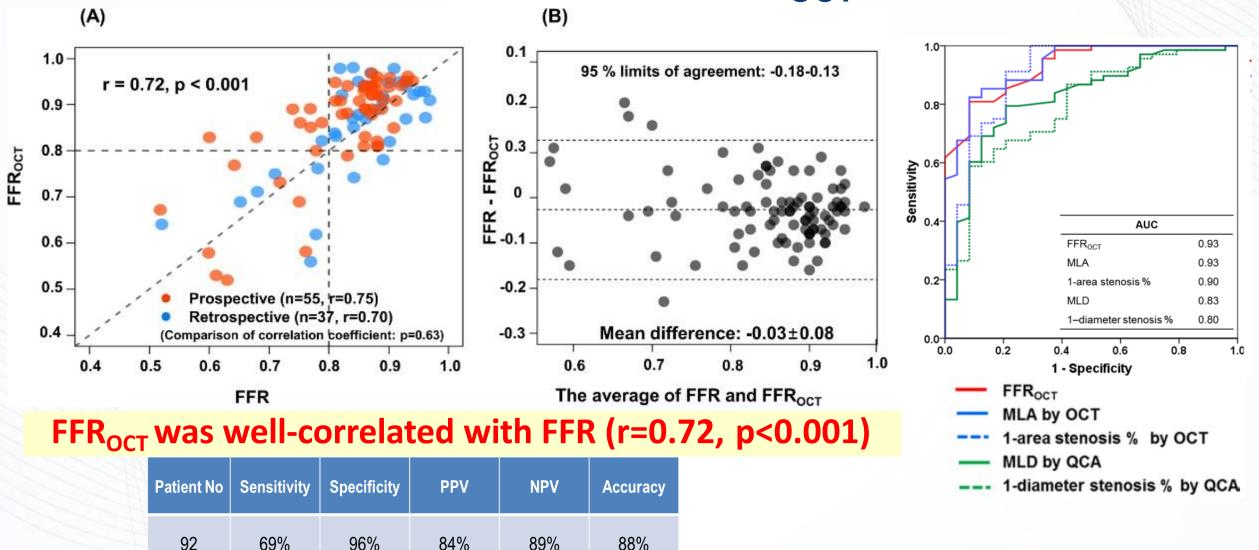
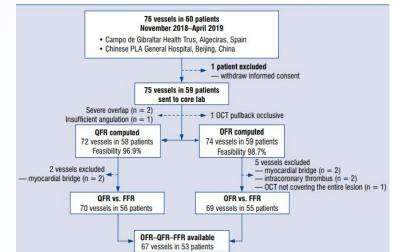

Variables	Total (n=92)
Age, y, mean±SD	62.7±9.6
Sex, male, n (%)	58 (63.0)
Unstable angina, n (%)	27 (29.3)
Diabetes mellitus, n (%)	20 (21.7)
Hypertension, n (%)	54 (58.7)
Dyslipidemia, n (%)	64 (69.6)
Current smoker, n (%)	12 (13.0)
Multivessel disease, n (%)	22 (26.8)

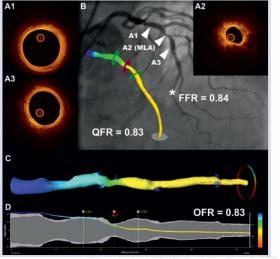
Table 2.Coronary Angiographic and Optical CoherenceTomographic Findings

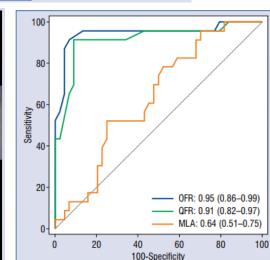
	Total (n=92)		
Bifurcation, n (%)	19 (20.7)		
Calcification, n (%)	2 (2.2)		
Quantitative coronary angiography data, mean±SD			
Reference vessel diameter, mm	3.0±0.5		
Minimal lumen diameter, mm	1.3±0.5		
Diameter stenosis, %	58.1±13.4		
Lesion length, mm	14.0±7.3		
Optical coherence tomography data, mean±SD			
Proximal reference segment lumen area	8.7±3.0		
Distal reference segment lumen area	6.4±2.3		
Minimal lumen area of target lesion	2.5±1.3		
Area stenosis, %	67.5±13.5		

CFD based OCT-FFR

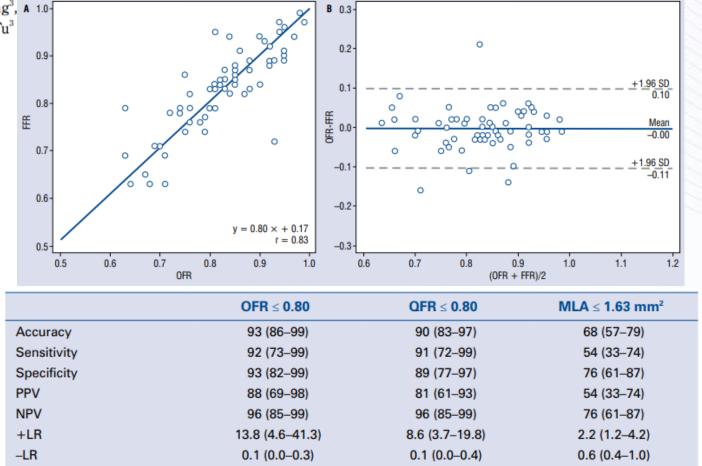
Correlation between FFRoct and FFR

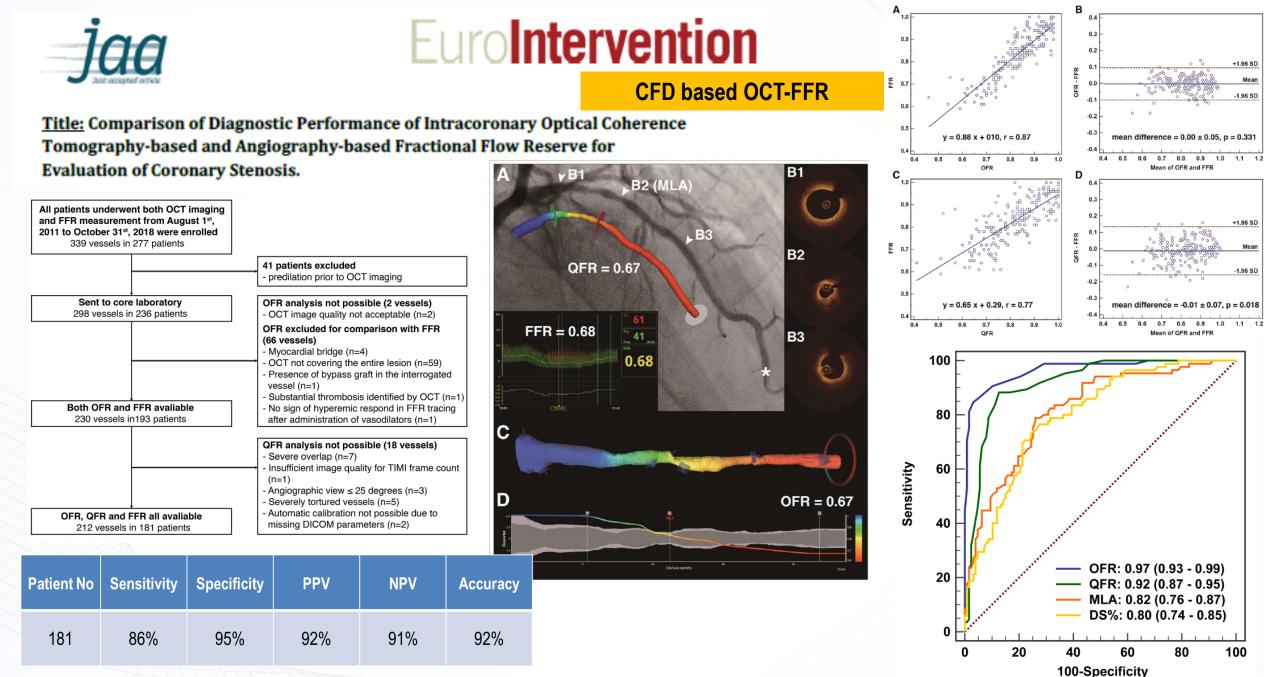



28th TCTA


Ha J, Kim JS, Hong MK, et al. Cir Cardiovasc Interv 2016

Diagnostic accuracy and reproducibility of optical flow ratio for functional evaluation of coronary stenosis in a prospective series


Juan Luis Gutiérrez-Chico¹*, Yundai Chen²*, Wei Yu³*, Daixin Ding³, Jiayue Huang³, A 1.0-Peng Huang³, Jing Jing², Miao Chu^{1,3}, Peng Wu³, Feng Tian², Bo Xu⁴, Shengxian Tu³



CFD based OCT-FFR

Cardiol J 2020; 27,4: 350–361

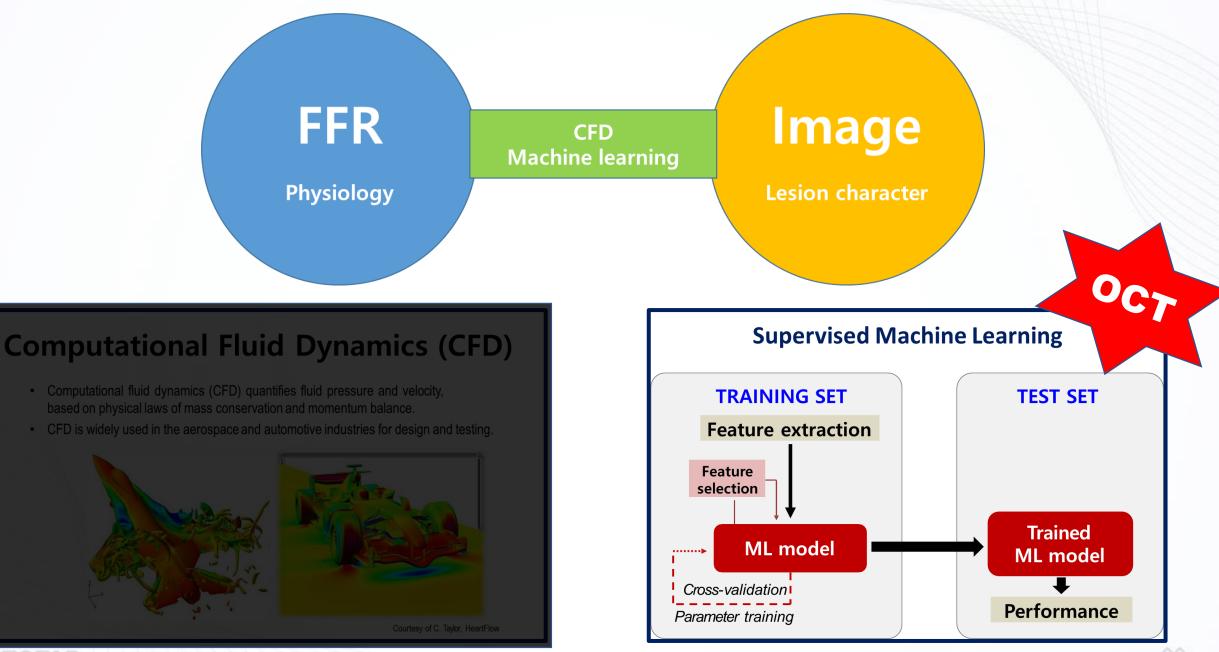
EuroIntervention 2020;16:568-576

100

80

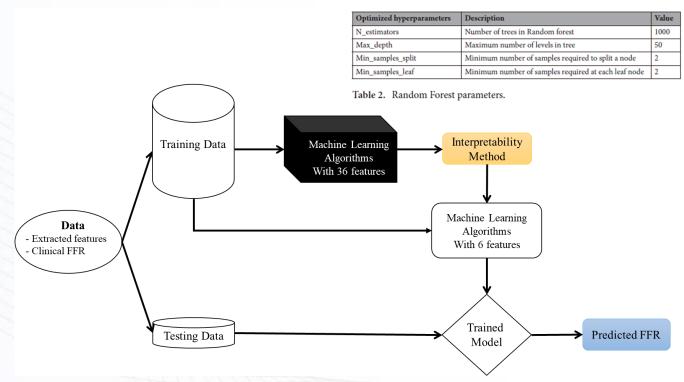
+1.96 SD Mean

1.96 SD


+1.96 SD

Mean

-1.96 SD

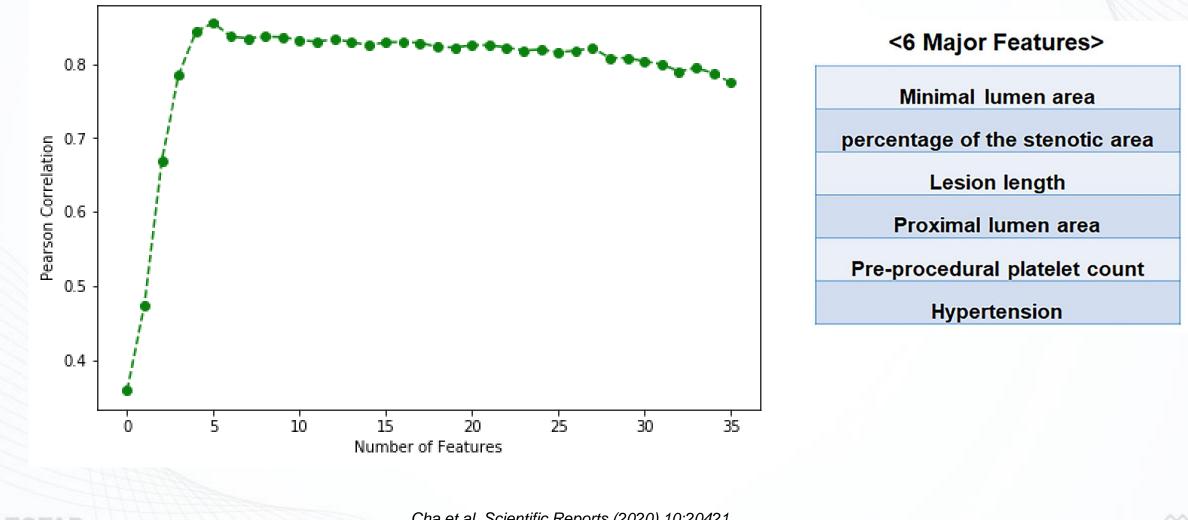

Mean of OFR and FFR

Mean of QFR and FFR

scientific reports

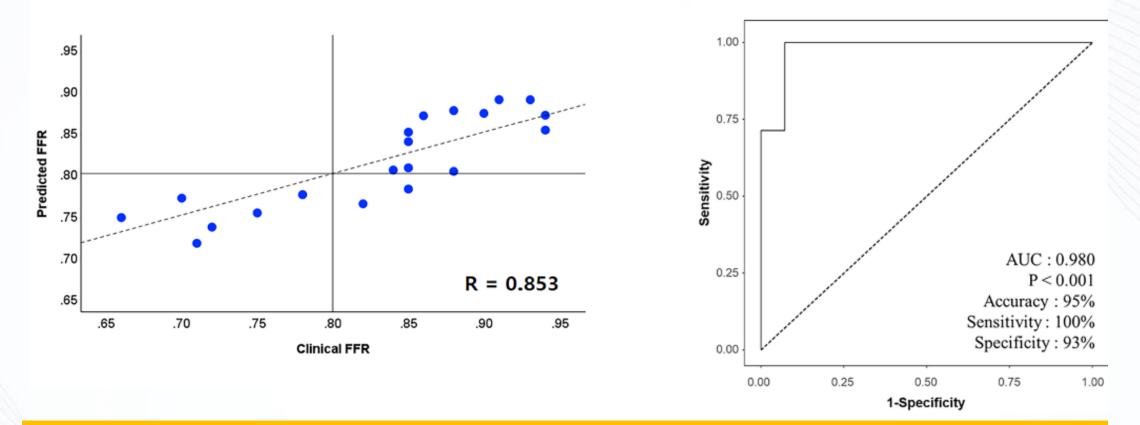
OPEN Optical coherence tomography-based machine learning for predicting fractional flow reserve in intermediate coronary stenosis: a feasibility study

Cha et al. Scientific Reports (2020) 10:20421


Check for

ML based OCT-FFR

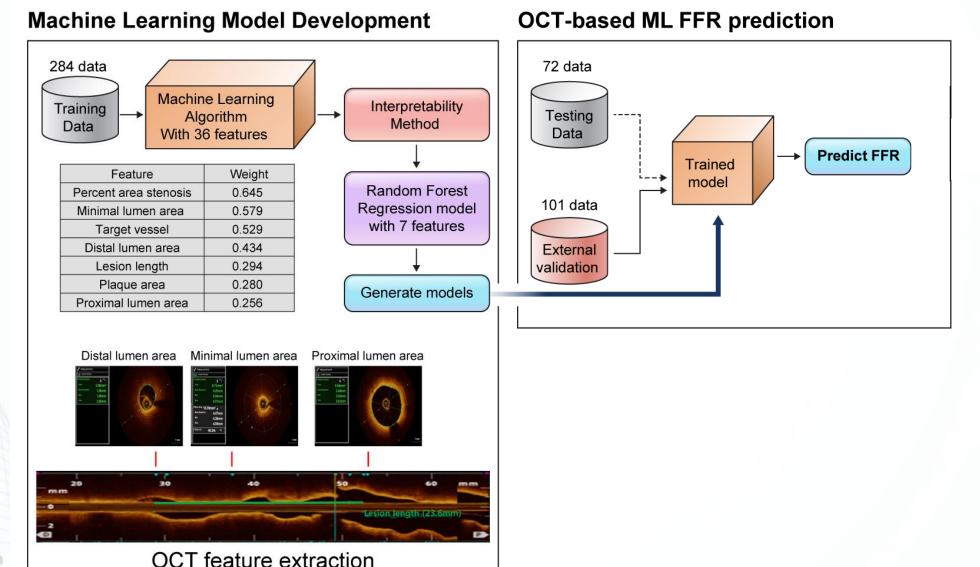
	Feature	Weight	Standard deviation
1	Minimal lumen area	0.431489	0.201828
2	Area stenosis (%)	0.115880	0.038884
3	Lesion length	0.035337	0.011430
4	Pre-procedural platelet count	0.033187	0.021882
5	Proximal lumen area	0.026289	0.004752
6	Hypertension	0.016973	0.006676
7	Distal lumen area	0.009928	0.015942
8	Pre-procedural blood urea nitrogen level	0.007642	0.007495
9	Hypercholesterolemia	0.002688	0.002036
10	Calcified nodule	0.002309	0.000532
11	Pre-procedural hemoglobin level	0.001440	0.010278
12	Fibrocalcific nodule	0.000846	0.001332
13	Lipid rich plaque	0.000843	0.000886
14	Existence of thrombus	0.000077	0.001775
15	Dissection	0.000008	0.000292
16	lipid arc over 90° with thickness less than 65 μm	0.000000	0.000000
17	Existence of ruptured plaque	- 0.000032	0.002259
18	Diabetes mellitus	- 0.000096	0.001015
19	Age	- 0.000137	0.004589
20	Existence of erosion	- 0.000268	0.000213
21	Weight	- 0.000353	0.007105
22	lipid arc over 90°	- 0.000460	0.002299
23	Existence of macrophage	- 0.000802	0.004656
24	Unstable angina	- 0.000820	0.003374
25	Fibrous nodule	- 0.000922	0.001797
26	Existence of necrotic core	- 0.000950	0.000307
27	Gender	- 0.001616	0.000551
28	Existence of cholesterol crystal	- 0.002124	0.001706
29	Current smoking	- 0.003752	0.002504
30	Pre-procedural creatinine level	- 0.004177	0.012168
31	Existence of microvessels	- 0.004760	0.001435
32	Body mass index	- 0.006832	0.002180
33	Systolic blood pressure	- 0.008183	0.004773
34	diastolic blood pressure	- 0.008704	0.000831
35	Plaque area	- 0.011278	0.017001
36	Height	- 0.024011	0.013424


22

ML based OCT-FFR

Cha et al. Scientific Reports (2020) 10:20421

ML based OCT-FFR



- CFD-based OCT FFR computation : about 20 min manual procedure of OCT lumen extraction and 3D rendering for CFD
 Machine learning-based OCT FFR : 2–3 min
 - extract key OCT features and analyze FFR

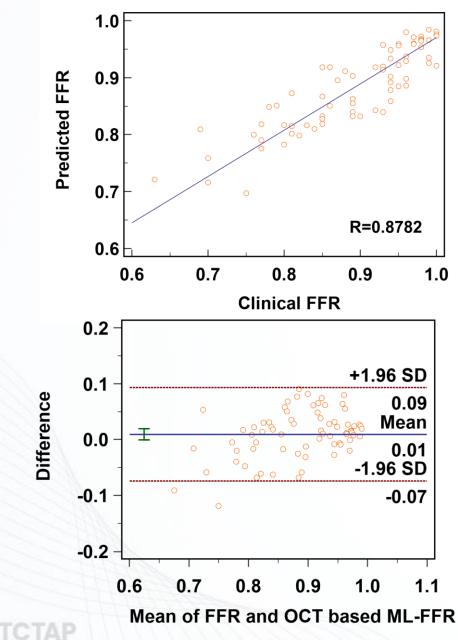
ML based OCT-FFR

ML based OCT-FFR on intermediate coronary stenosis

[Global model]

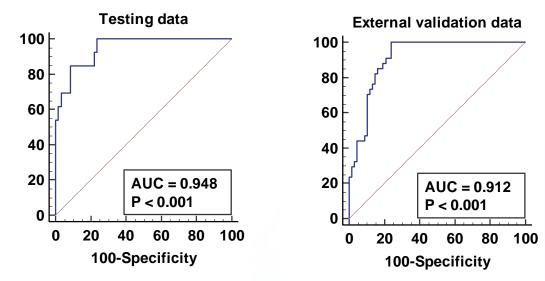
Cha, et al. Front Cardiovasc Med 2023 Jan 25;10:1082214

Baseline characteristics


Clinical Data		Clinical Data	
Age (years)	62.5 ± 8.8	Pre-procedural creatinine level (mg/dL)	0.8 ± 0.1
Sex, male, n (%)	97 (74.6)		
Coronary artery location, n (%)		Optical coherence tomography parameters	
- Left anterior descending	130 (36.5)	Proximal lumen area (mm)	7.6 ± 3.4
- Left circumflex	110 (30.9)	Minimal lumen area (mm)	3.6 ± 2.5
- Right coronary artery	116 (32.6)	Distal lumen area (mm)	8.2 ± 3.6
Systolic blood pressure (mmHg)	131.9 ± 19.3	Lesion length (mm)	22.7 ± 12.0
Diastolic blood pressure (mmHg)	75.3 ± 11.0	Plaque area	14.6 ± 5.0
Height (cm)		Area stenosis (%)	76.4 ± 11.0
Weight (kg)	165.9 ± 8.0	Calcified nodule	34 (9.6)
Body mass index (kg/m ²)	69.8 ± 10.4	Lipid-rich plaque, n (%)	87 (24.4)
	25.3 ± 3.0	Lipid arc over 90 degrees, n (%)	60 (16.9)
Acute coronary syndrome, n (%)	38 (29.2%)	Lipid arc over 90 degrees with thickness < 65 $\mu m,$ n (%)	24 (6.7)
Hypertension, n (%)	79 (60.8%)	Existence of dissection, n (%)	16 (4.5)
Diabetes mellitus, n (%)	41 (31.5%)	Existence of necrotic core, n (%)	162 (45.5)
Hypercholesterolemia	58 (44.6%)	Existence of microvessels, n (%)	94 (26.4)
Current smoking, n (%)	29 (22.3)	Existence of cholesterol crystal, n (%)	137 (38.5)
Pre-procedural hemoglobin level (mg/dL)	14.3 ± 1.3	Existence of rupture, n (%)	42 (11.8)
Pre-procedural platelet count (×10 ³ μ L)	234.7 ± 60.8	Existence of erosion, n (%)	24 (6.7)
Pre-procedural BUN level (mg/dL)	15.8 ± 4.4	Existence of macrophage, n (%)	34 (9.6)

ML based OCT-FFR

28th TCTAP


Cha, et al. Front Cardiovasc Med 2023 Jan 25;10:1082214

Results

ML based OCT-FFR

	Testing (n=72)	External validation (n=101)
Pearson correlation	0.8782	0.7884
Sensitivity	98.3%	89.6%
Specificity	61.5%	70.6%
Positive prediction value	92.1%	85.7%
Negative prediction value	88.9%	77.4%
Accuracy	91.7%	83.2%

Cha, et al. Front Cardiovasc Med 2023 Jan 25;10:1082214

Conclusion

- Intravascular OCT has the highest resolution imaging modality compared with CT, angiography, IVUS.
- Thus, OCT can provide morphological information about lesion characteristics more <u>accurately</u> to CFD and Machine learning methods.
- **CFD** or **ML** based OCT-FFR derived techniques can be a useful method for the <u>evaluation the functional and anatomic severity</u> of coronary stenosis.
- Compared to the CFD-based OCT-FFR, ML-based OCT FFR has cost effectiveness with time saving (Real-time procedure)
- Although CFD or ML had still several limitations to apply real clinical practice, integration of functional and anatomical information may provide better treatments for intermediate coronary artery stenosis.