Application of Al and Robotics for Cardiovascular Care

Young-Hak Kim, MD, PhD

Cardiology Division, Department of Information Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Disclosure

- Young-Hak Kim, MD, PhD
 - Co-founder & medical advisor of LN Robotics Corp.
 - Medical advisor of Medipixel Corp.
 - Founder & CEO of InMed Data Corp.

Topics

Interventional robotics for coronary artery disease treatment

Al for assistance of coronary intervention

Topics

Interventional robotics for coronary artery disease treatment

Al for assistance of coronary intervention

Remote-Control Percutaneous Coronary Interventions

Concept, Validation, and First-in-Humans Pilot Clinical Trial

Rafael Beyar, MD, DSC,* Luis Gruberg, MD,* Dan Deleanu, MD,† Ariel Roguin, MD, PHD,* Yaron Almagor, MD,‡ Silviu Cohen, RN,* Ganesh Kumar, MD,* Tal Wenderow, BSC§ Haifa and Jerusalem, Israel; and Bucharest, Romania

Remote Navigation System (RNS, NaviCath, Haifa, Israel)

The potential advantages of a remote catheterization system can be summarized as:

- reduced operator radiation exposure and spine problems;
- provision of a convenient working environment;
- enhanced precision of balloon and stent positioning which may translate to clinical benefit;
- future inclusion of semiautomatic, robotically controlled functions and
- minimizing operator-based errors.

CorPath 200 System (Corindus,Inc., Natick, Massachusetts)

- : US FDA approval in 2012
- Corindus Corp. was acquired by Siemens in 2019
- Currently 2nd generation system is available

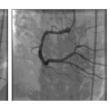
JACC: CARDIOVASCULAR INTERVENTIONS

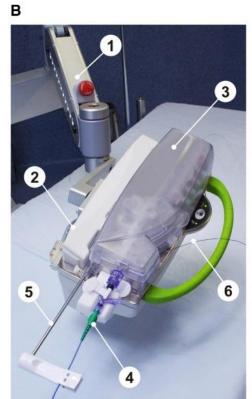
o 2011 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER INC.

VOL. 4, NO. 4, 2011 ISSN 1936-8798/\$36.00 DOI: 10.1016/j.jcin.2010.12.007

First-in-Human Evaluation of a Novel Robotic-Assisted Coronary Angioplasty System

Juan F. Granada, MD,*‡ Juan A. Delgado, MD,† Maria Paola Uribe, MSCE,† Andres Fernandez, MD,‡ Guillermo Blanco, MD,‡ Martin B. Leon, MD,§ Giora Weisz, MD§


New York, New York; and Envigado, Colombia



Meta-analysis

Clinical Success of Robotic vs. Manual PCI

	R-PC	CI	M-P(CI		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Beyar 2006	18	18	20	20	2.8%	1.00 [0.91, 1.10]	1
Hirai 2020	44	49	40	46	1.3%	1.03 [0.89, 1.20]] -
Kagiyama 2021	26	28	33	35	1.6%	0.98 [0.86, 1.12]	j
Madder 2017a	45	45	278	291	17.8%	1.04 [1.00, 1.08]	j
Mahmud 2017	107	108	224	226	57.3%	1.00 [0.98, 1.02]] —
Smilowitz 2014	40	40	80	80	19.1%	1.00 [0.96, 1.04]	1
Total (95% CI)		288		698	100.0%	1.01 [0.99, 1.02]	1
Total events	280		675				
Heterogeneity: Tau2=	0.00; Chi	$i^2 = 2.94$	4, df = 5 (P = 0.7	1); $I^2 = 09$	6	0.85 0.9 1 1.1 1.3
Test for overall effect:					:56 ()		0.85 0.9 1 1.1 1.2 Favours R-PCI Favours M-PCI

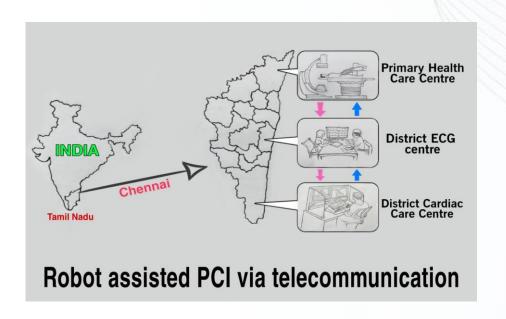
Meta-analysis

Contrast Volume of Robotic vs. Manual PCI

	F	R-PCI		M-PCI			Mean Difference			Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
Hirai 2020	111	39	49	118	53	46	12.1%	-7.00 [-25.81, 11.81]			
Kagiyama 2021	93.2	44.5	30	107.8	43.4	77	12.3%	-14.60 [-33.24, 4.04]			
Madder 2017a	167	89	45	154.2	94.5	291	5.9%	12.80 [-15.38, 40.98]			
Mahmud 2017	183.4	78.7	108	202.5	74	226	13.4%	-19.10 [-36.80, -1.40]		-	
Patel 2020	133.3	52.1	310	153.3	52	686	45.4%	-20.00 [-26.98, -13.02]		-	
Smilowitz 2014	121	47	40	137	62	80	11.0%	-16.00 [-35.92, 3.92]		-	
Total (95% CI)			582			1406	100.0%	-15.27 [-22.37, -8.18]		•	
Heterogeneity: Tau ² =	= 16.21; (Chi²=	6.21, di	f= 5 (P :	= 0.29)); I ² = 20	0%		-100	-50 0 50	100
Test for overall effect	Z = 4.22	(P < 0	0.0001)						-100	Favours R-PCI Favours M-PCI	100

Meta-analysis

• Fluoroscopy Time of Robotic vs. Manual PCI


	F	R-PCI		I.	N-PCI			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	I IV, Random, 95% CI
Beyar 2006	8.8	4.8	18	9.1	3.5	20	12.1%	-0.30 [-3.00, 2.40]	+
Hirai 2020	37.9	17.9	49	48.6	17.1	46	2.3%	-10.70 [-17.74, -3.66]	i —
Kagiyama 2021	27.5	18.9	30	31.5	18.9	77	1.8%	-4.00 [-11.97, 3.97]	1
Madder 2017a	11.7	6.8	45	12.4	9.4	291	15.4%	-0.70 [-2.96, 1.56]	i +
Mahmud 2017	18.2	10.4	108	19.2	11.4	226	13.8%	-1.00 [-3.46, 1.46]	i -
Patel 2020	5.9	4.4	310	6.7	4	686	38.7%	-0.80 [-1.37, -0.23]	i)
Smilowitz 2014	10.1	4.7	40	12.3	7.6	80	15.8%	-2.20 [-4.41, 0.01]	1 *
Total (95% CI)			600			1426	100.0%	-1.26 [-2.37, -0.16]	1 •
Heterogeneity: Tau ² =	= 0.74; C	hi² = 9	.69, df	= 6 (P =	0.14);	$I^2 = 389$	%		150 35 5
Test for overall effect									-50 -25 0 25 5 Favours R-PCI Favours M-PCI

Remote Tele-Robotic PCI

- 20 miles away
- CorPath GRX for 5 patients
- LAN/MAN/WAN connectivity

"Remote tele-R-PCI through the telerobotic platform for STEMI patients in rural areas and during pandemic scenarios such as infectious disease transmission(Covid-19) may be viable."

LN ROBOTICS

Robotic Angioplasty Devices

MFDS approval

First in Man with AVIATOR 1

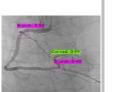
AVIATOR 2 for Commercial Use

Key Advantages of Aviator 2

Technical Advancement

1.'One-Hand' haptic control5 DOF haptic interface

2. Complex PCI


Multi-channel mechanism

4. Smart UI/UX & AI assistance

Semi-automatic / autonomous wire navigation

Clinical Advantages

Enhanced haptic rendering (virtual force field)

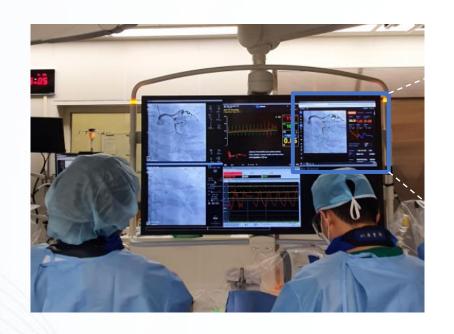
Enhanced multi-channel mechanism

Enhanced usability of the disposable set

Semi-automatic / autonomous wire navigation

3D dynamic "roadmap"

Registry for Safety & Feasibility Assessment


- A multicenter registry for 200 patients who are planned to receive coronary stenting
- Study purpose: To assess the feasibility and safety of AVIATOR 2.0 robotic systems
- The first patient is scheduled to be enrolled in autumn 2023.
- PI: Seung-Whan Lee, MD, PhD, Asan Medical Center

Topics

Interventional robotics for coronary artery disease treatment

Al for assistance of coronary intervention

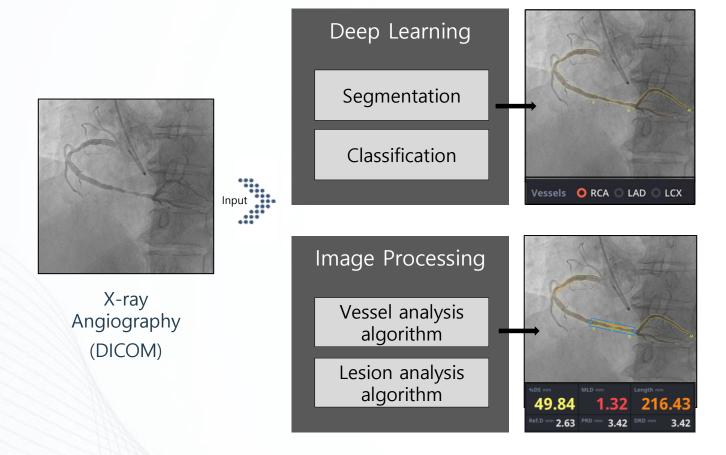
Al-QCA for PCI Assistance: MPXA by MEDIPIXEL Corp.

- Provides detailed information on the target lesion in real-time
- Supports physicians' decision-making for PCI
- Provides more accuracy and consistency than visual estimation

What AI-QCA can do

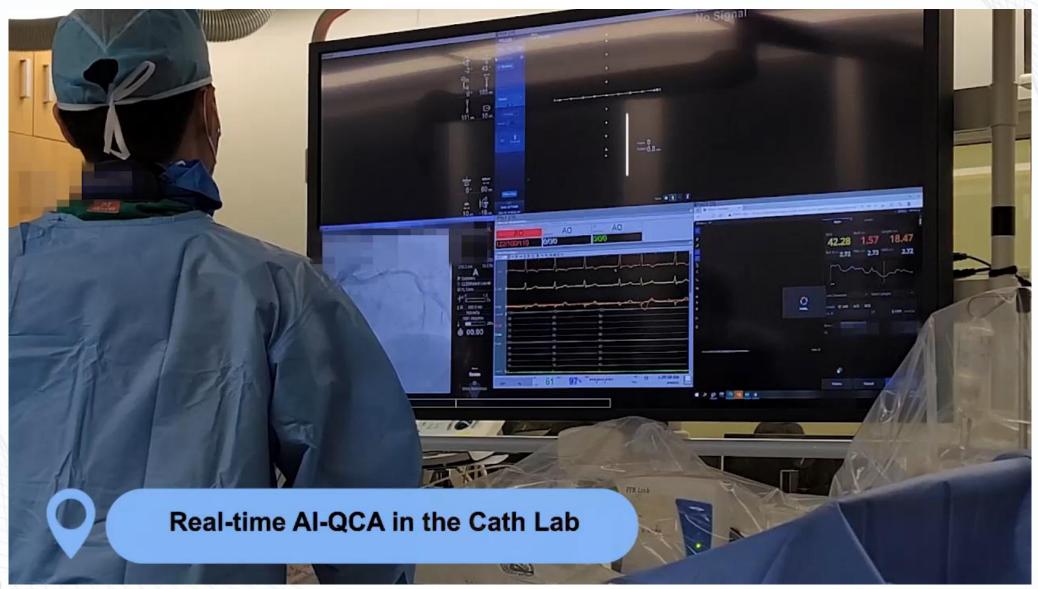
Lesion information provided

- %DS of the lesion
- Lesion length
- MLD, etc.

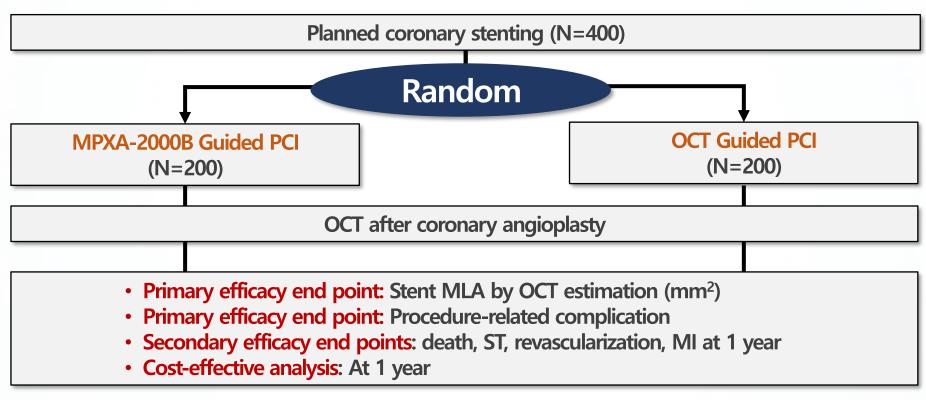

Scope of the analysis

- Multi-lesions
- Multi-vessels
 - Main and Side branches

AI-QCA allows you to obtain all necessary QCA information within a couple of seconds.


Well trained AI Engine

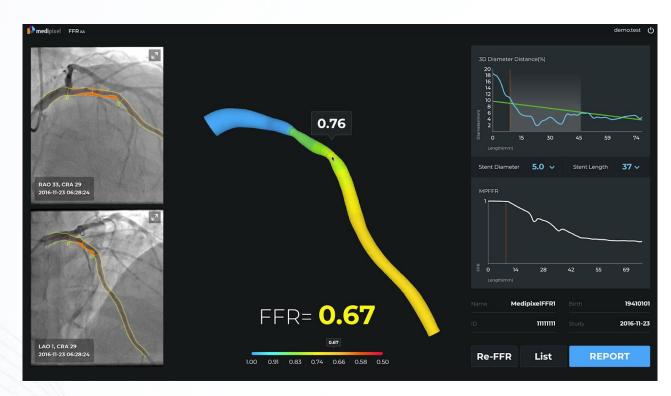
- DL-based segmentation
- AI trained with about 10,000 patients' data
 - Accuracy increases with more data
 - Data include patients with complex lesions
- Dataset used for learning reflect the real patient pool



How it works

FLASH Multicenter Randomized Trial

Fully Automated Quantitative Coronary Angiography versu S Optical CoHerence Tomography Guidance for Coronary Stent Implantation



Procedure-related complication: dissection, perforation, thrombosis, acute closure

PI: Jung-Min Ahn, MD, PhD

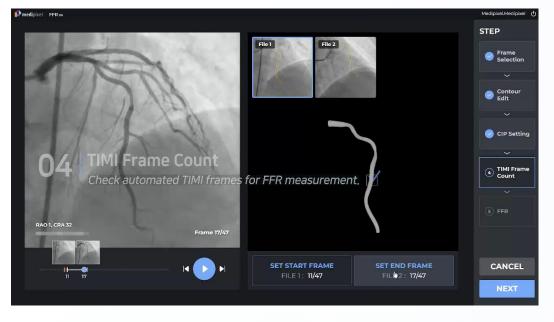
Upcoming Program of AI-FFR: MPFFR_{XA}

Automated Features

Frame Contour CIP TIMI Frame FFR Value 2D QCA Info Selection Segmentation Estimation Selection Estimation Display

trained with more than 10,000 angiograms for additional automation features such as CIP estimation, FFR value estimation, etc.

MPFFR_{XA} expands the FFR market


- ✓ Less than one minute
- ✓ Affordable cost
- ✓ No patient discomfort
- ✓ Reimbursement opportunity

Performance (Internal data;

(Internal data; clinical trial result Data coming soon)

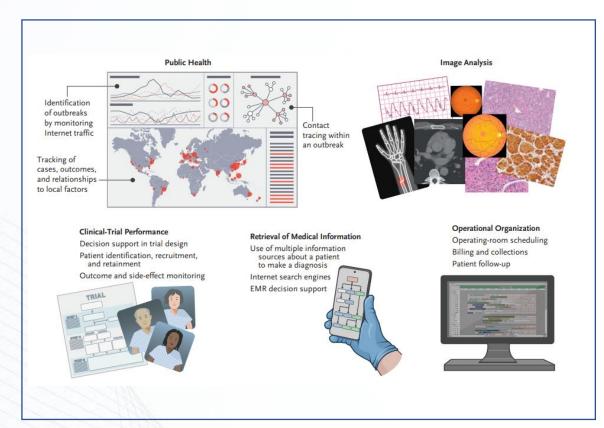
- Segmentation 0.92 (f1 score)
- ✓ 3D modeling 0.96 (f1 score)

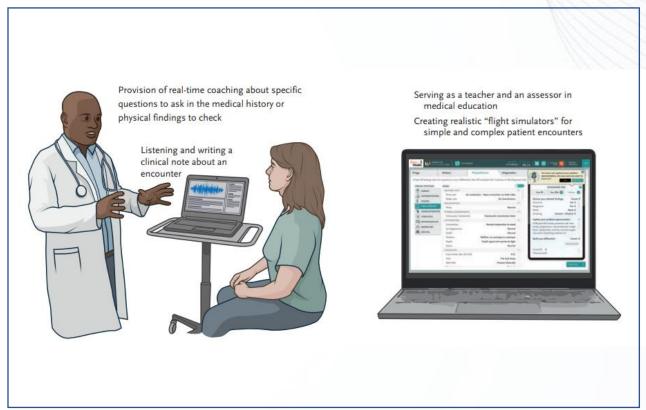
Synergistic Role of AI-QCA and AI-FFR

Both morphological and functional information at a time

AI-QCA with MPXA

AI-FFR by MPFFR_{XA}


Sharing core technologies


- Frame selection
- Contour segmentation
- Calibration
- Access control ...

Al in Medicine

Present Future

Summary / Conclusion

Robotic angioplasty

- It reduces occupational hazard of radiation exposure and orthopedic injuries of operators.
- Procedural outcomes are comparable as reference to the standard manual PCI.
- Potential benefit for complex PCI with a new PCI robotic system will be tested by future clinical studies.

Al for interventional cardiology

- Al may be used to better predict possible adverse events and outcomes of patients.
- Al-assisted real time QCA can assist operators to determine coronary lesion morphology and select appropriate devices.
- Its benefit will be tested with a randomized clinical trial in Korea.

