TAVR Leaflet Thrombosis and Post-TAVR Pharmacological Therapy

George D. Dangas, MD, MSCAI, MACC, FAHA, FESC Professor of Medicine (Cardiology) and Surgery (Vascular) Icahn School of Medicine at Mount Sinai, New York, NY

✓ ● @GeorgeDangas George.Dangas@mountsinai.org

Research Grants to Institution from Bayer and Daiichi-Sankyo for PI of clinical trial and relevant consultation/lectures.

Bleeding vs. Ischemic Events After TAVR

P. Vranckx et al. European Heart Journal (2017) 38, 3341–3350

Expression of Tissue Factor in Aortic Valve Leaflets of Varying Status

Maréchaux et al. Cardiovasc Pathol 2009; 18(2):67-76

Mechanisms of Prosthetic Valve Thrombosis

Dangas G, Weitz J, Giustino G, Makkar R, Mehran R. JACC 2016

Hypoattenuated Leaflet Thickening (HALT)

<25% of Leaflet

25-50% of Leaflet

50-75% of Leaflet

>75% of Leaflet

Reduced Leaflet Motion (HAM)

De Backer et al, N Engl J Med. 2020 Jan 9;382(2):130-139.

Subclinical Leaflet Thrombosis in PARTNER 3 Trial – Imaging Substudy

- 221 patients undergoing TAVR and 214 underdoing SAVR
- Patients on OAC excluded (minimizes this confounder and allows for better understanding of the natural history of HALT/RELM)

Subclinical Leaflet Thrombosis in Transcatheter Versus Surgical Bioprosthetic Aortic Valves

Impact of subclinical leaflet thrombosis on valve hemodynamics and clinical outcomes

- No difference in aortic valve mean gradients between patients with or without HALT at 30 days or 1 year
- Increased aortic valve gradients in patients with increasing severity of HALT; and in patients with persistent HALT at 30 days and 1 year
- Increased rates of clinical valve thrombosis and composite endpoint of stroke/transient ischemic attack/thromboembolic complications in patients with HALT

Subclinical Leaflet Thrombosis at 30 days and 1 year follow-up

Presented by Raj R. Makkar, MD on behalf of the PARTNER 3 Trial Investigators, TCT 2019

Art and Science of Cerebrovascular Event Prevention After TAVR

The evolving concepts of timing, risk factor contributions, and preventive strategies for cerebrovascular events (CVE) in patients undergoing TAVR

Dangas G and Giustino G Circulation Cardiovascular Intervention 2016; 9 e004307

Thirty-day outcomes of DAPT versus Aspirin after TAVR

Meta-analysis of 421 patients from 3 RCTs

Three trials on DAPT versus aspirin after TAVR in non-OAC patients are actually available:

- ARTE follows 2 previous
- Stabile E et al 2014
- Ussia GP et al 2011

The pooled results of the 3 trials now cumulatively suggest:

- no benefit of DAPT in reducing 30day stroke
- trend toward an increase in major or life-threatening bleeding over

Log Odds Ratio

Capodanno D. JACC Cardiovasc Interv. 2017 May 11. pii: S1936-8798(17)30898-1

The GALILEO Trial in Patients w/o OAC indication

Global Study Comparing a Rivaroxaban-Based Antithrombotic Strategy to an Antiplatelet-Based Strategy After TAVR to Optimize Clinical Outcomes

Windecker S et al, Am Heart J. 2017 Feb;184:81-87.

The GALILEO Trial

RESULTS

Days since Randomization

Dangas G et al, N Engl J Med. 2020 Jan 9;382(2):120-129.

Reduced Leaflet Motion after TAVR

A Sub study of the GALILEO Trial - GALILEO 4D

Intention-to-Treat Analysis

A rivaroxaban-based antithrombotic strategy was more effective than an antiplatelet-based strategy in preventing subclinical leaflet-motion abnormalities.

De Backer et al, N Engl J Med. 2020 Jan 9;382(2):130-139.

POPULAR TAVI:

Antithrombotic Therapy for Patients Undergoing TAVR

POPULAR TAVI – no OAC:

All Medications started preTAVI

Patients <u>WITHOUT</u> an Indication for Long-term Anticoagulation

Primary Outcomes of All Bleeding

Death from CV Causes, Ischemic Stroke, or MI

POPULAR TAVI – OAC:

Patients WITH an Indication for Long-term Anticoagulation (meds started preTAVI)

Nijenhuis et al., N Engl J Med 2020; 382:1696-1707

ATLANTIS Trial

Anti-Thrombotic Strategy to Lower All cardiovascular and Neurologic Ischemic and Hemorrhagic Events after TransAortic Valve Implantation for Aortic Stenosis

Primary end-point is a composite of death, MI, stroke, systemic emboli, intracardiac or bioprosthesis thrombus, episode of deep vein thrombosis or pulmonary embolism, major bleedings over one year follow-up.

ATLANTIS Trial – Primary Endpoint (Intention-to-treat)

Time to death, stroke, MI, systemic emboli, intracardiac or valve thrombosis, DVT/PE, major bleedings

ATLANTIS Trial - Outcomes in stratum 1 (post-hoc)

Indication for oral anticoagulation

	Apixaban	Standard of Care	Hazard ratio	
	(n=223)	(n=228)	(95% CI)	
Primary outcome*	49 (21-9%)	50 (21.9%)	1.02 (0.68-1.51)	
Secondary efficacy outcomes				
Death, MI, any stroke/TIA	29 (13-0%)	27 (11.8%)	1.13 (0.67-1.91)	
Death, any stroke/TIA or systemic embolism	28 (12.6%)	27 (11.8%)	1.09 (0.64-1.85)	
Death	23 (10-3%)	23 (10-1%)	1.04 (0.58-1.86)	
Safety outcomes				
Primary safety endpoint ⁺	23 (10-3%)	26 (11.4%)	0.92 (0.52-1.60)	
Minor bleeding (BARC 2 or 3a)	21 (9-5%)	27 (10·4%)	0.79 (0.44-1.39)	
Any bleeding	59 (26-4%)	58 (25.4%)	1.05 (0.73-1.51)	
Any Valve Thrombosis**	2 (0-9%)	3 (1·3%)	0.67 (0.11-4.04)	

*death, stroke, MI, systemic emboli, intracardiac or valve thrombosis, DVT/PE, major bleedings; †Life-threatening (including fatal) or disabling or major bleeding (BARC 4, 3a, b and 3c), as defined by Valve Academic Research Consortium-2 (VARC-2);

** Any evidence for valve thrombosis including HALT 3/4.

ATLANTIS Trial - Outcomes in stratum 2 (post-hoc) **No indication for oral anticoagulation**

	Apixaban	Standard of Care	Hazard ratio
	(n=526)	(n=523)	(95% CI)
Primary outcome*	89 (16-9%)	101 (19-3%)	0.88 (0.66-1.17)
Secondary efficacy outcomes			
Death, MI, any stroke/TIA	50 (9.5%)	35 (6.7%)	1.48 (0.96-2.30)
Death, any stroke/TIA or systemic embolism	50 (9·5%)	33 (6·3%)	1.56 (1.01-2.43)
Death	31 (5·9%)	18 (3-4%)	1.86 (1.04-3.34)
Cardiovascular death	17 (3.2%)	13 (2·5%)	1-42 (0-69-2-94)
Non cardiovascular death	14 (2·66%)	5 (0-96%)	2.99 (1.07-8.35)
Safety outcomes			
Primary safety endpoint ⁺	41 (7.8%)	38 (7.3%)	1.09 (0.69-1.69)
Minor bleeding (BARC 2 or 3a)	49 (9.3%)	51 (9.7%)	0.96 (0.65-1.42)
Any bleeding	115 (21-%)	112 (21.8%)	1.04 (0.80-1.35)
Any Valve Thrombosis**	6 (1.1%)	32 (6-1%)	0.19 (0.08-0.47)

*death, stroke, MI, systemic emboli, intracardiac or valve thrombosis, DVT/PE, major bleedings; †Life-threatening (including fatal) or disabling or major bleeding (BARC 4, 3a, b and 3c), as defined by Valve Academic Research Consortium-2 (VARC-2);

** Any evidence for valve thrombosis including HALT 3/4.

Edoxaban Versus VKA After TAVI in Patients with Atrial Fibrillation - The ENVISAGE-TAVI AF Trial

Prospective, randomised, open-label, blinded evaluation, edoxaban-based regimen vs VKA-based regimen in AF patients

AF, atrial fibrillation; AP, antiplatelet; APT, antiplatelet therapy; ASA, aspirin; BW, body weight; CrCl, creatinine clearance; DAPT, dual antiplatelet therapy; INR, international normalised ratio; mo, month; OAC, oral anticoagulant; PCI, percutaneous intervention; PPM, permanent pacemaker; P-gp, P-glycoprotein; pt, patient; SAPT, single antiplatelet therapy; TAVI, transcatheter aortic valve implantation; VKA, vitamin K antagonist, yr, year.

Edoxaban Versus VKA After TAVI in Patients with Atrial Fibrillation The ENVISAGE-TAVI AF Trial

NACE

(All-cause death, Ml, ischemic stroke, systemic thromboembolism, valve thrombosis, and major bleeding)

Major bleeding by ISTH Definition

Edoxaban was non-inferior to VKA for the primary composite outcome of adverse clinical events.

Presented by Dr Dangas at ESC 2021. Van Mieghem N and Dangas G et al, NEJM 2021 (In Press)

Risk Score – ENVISAGE TAVI AF

Model component	Weight	25. 1-year mortality rate	
Age, years		20	
<80 years	0	20	
80–89 years	4	17.0	
≥90	9	8 15	
CrCl, ml/min		u	
<30	8	ອັກ 10.1	
30–45	2		
>45	0	2 4.8	
Type of AF			
Nonparoxysmal	4		
Paroxysmal	0	0	
NYHA, class III or IV	3	0–10 11–15 ≥16	
Excessive alcohol use	13	Low Moderate High	
Peripheral artery disease history	5	Risk score category	
Prior major bleeding or	F	No. of patients with mortality 71 56 45	
predisposition to bleeding	Э	Total no. of patients843344186	

Analyses were Yes vs No unless otherwise indicated.

AF, atrial fibrillation; CrCl, creatinine clearance; No., number; NYHA, New York Heart Association.

Conclusions

- > Limited evidence available regarding the choice of the optimal antithrombotic strategy after TAVR.
- > Based on recent data from a series of clinical trials,
 - > Even low dose OAC is effective against the CTA-driven diagnosis of TAVI leaflet thrombosis
 - > When another OAC indication exists, monotherapy is the most reasonable option
 - > No role for routine OAC (full or intermediate dose) when no clear indication exists
 - > The up to now widespread clopidogrel loading pre-TAVI is no longer required
 - Prolonged combination antithrombotic strategies should be **avoided** if there is no indication for both antiplatelet and anticoagulant drugs.
- A tailored approach is mandatory, especially in light of the high burden of comorbidities of patients undergoing TAVR and NO obvious clinical correlation of the bothersome CTA-driven valve leaflet thrombosis
 - > ? Valve durability impact of leaflet thrombosis and of the various antithrombotic regimens

More studies are required to develop a rational and customized strategic approach to balance the bleeding risks of new drug therapies and their antithrombotic value in preventing important valve-related thrombotic events.