Next innovations in transcatheter valve interventions: new techniques and new valves

Tullio Palmerini

Alma Mater Studiorum, University of Bologna

Italy

Next generation THV design

- Leaflet technology (valve durability and extension of indication to younger patients)
- Valve performance (better deliverability, reduced rates of PPM and PVL, commissural alignment for better coronary access)
- Pure aortic regurgitation
- Plan for THV in THV

The new is coming from the old

EVOLUT FX SYSTEM

Enhanced stability during deployment

Marker orientation identifies alignement

Sapien X 4

Novel frame and leaflet design

- Enables adjustable sizing while maintaining valve performance over the deployment diameter range
- Maintains high radial strength cobalt chromium balloon-expandable design

Low frame height and large cells

 Facilitates future coronary access

Integrity preservation technology

RESILIA tissue

- Offers enhanced anticalcification technology and enables dry storage
- Maintains bovine pericardial leaflets matched for thickness and elasticity

Enhanced PET outer skirt

- Designed to further minimize PVL
- Maintains low profile access

Resilia tissue valve: integrity preservation technology

Glutaraldehyde Fixation

Glutaraldehyde Storage

Stable-Capping Permanently blocks free aldehydes **Glycerolization** Glycerol displaces water in the tissue and preserves tissue integrity, which enables dry storage Glycerolized Tissue

RESILIA Tissue Valve

Sapien Ultra versus Sapien X4

SAPIEN 3 Ultra 4 valve sizes (3 mm increments)

SAPIEN X4 3 valve sizes, 16 unique deployment diameters (0.5 mm increments)

Sapien X 4 delivery system

Jena valve for pure aortic regurgitation

Jenavalve Trilogy System – Positioning and Securing in AR Anatomy

Alignment

• Aligns THV with native cusps

Positioning/Anchoring

 Locators "clip" onto native leaflets forming a natural seal and stable securement

Deployment

- Large open cells provide access to low coronaries
- 24 diamond-shaped cells provide annular conformability and sealing

Anteris DurAVR THV

- Balloon expandable
- Short frame height
- Large open cell geometry
- Delivery system can rotate to achieve commissural alignment
- ADAPT: anticalcification tissue process (DNA and glutaraldyede free)
- PET skirt

Anteris DurAVR THV

Single-piece of bovine pericardium tissue

- Near normal hemodinamic function
- Better leaflet coaptation
- Less leaflet stress

Restoration of normal aortic flow

FD = 14% FRR = 4% (n=5)

Polymeric valves

- Automated robotic manufacturing
- High reproducibility of manufacturing and lower costs
- Polymeric compunds may be modified to meet the needs of THV (biostability, biocomaptibility, leaflet strength, and durability)
- For TAVI, only tested in animal model

Foldax Tria Heart valve: the only one tested in humans

- Surgical valve
- Sylicone polyurethane material
- Durability of 16 years at Accelerated Wear Testing models
- Low ex-vivo thrombogenicity (non-human primate AV shunt models)

Conclusions

- Iteration of aortic THV is progressing relentlessy with new devices coming with longer valve durability and better performance in terms of deliverability, PP implantation, PVL, and better commissure alignment for coronary access.
- Polymeric heart valves have the potential of long durability, biostability, biocomaptibility, and leaflet strength and therefore clinical trials are needed to prove their safety and efficacy.