TCT AP 2023 Seoul, May 7-9, 2023

Conventional Aortic Valve Surgery

Is there a better way?

Can we we challenge the good Results of conventional Aortic Valve Surgery?

The Evolution of Clinical Evidenve (TAVR vs SAVR)

Courtesy S. Windecker

EVIDENCE AND GUIDELINES

Key Patient and Physician Endpoints

The incredible success of TAVR across the risk spectrum has proven it is the therapy for almost all patients with severe, symptomatic aortic stenosis.

TAVR has demonstrated it is as good or even better than the previous gold standard, SAVR.

What Matters to the Patients and Physicians

TAVR has a *Mortality Advantage* over SAVR

A meta-analysis of 7 randomized control trials showed a 12% relative mortality risk reduction up to 2 years for TAVR compared to SAVR across the risk spectrum. **TAVI has a mortality advantage and is the preferred treatment option.**

TAVR has a Stroke Advantage over SAVR

A meta-analysis of 7 randomized control trials showed a 19% relative stoke risk reduction up to 2 years for TAVI compared to SAVR.

Stroke rates are better than SAVR with contemporary devices in clinical trials making TAVR the preferred therapy.

TAVR has a **QoL Advantage** over SAVR Less Adverse Events

Additionally, TAVR provides reduced rates of acute kidney injury, AF, and bleeding

TAVI has a **QoL Advantage** over SAVR

Faster Recovery

Evolut Low Risk: Faster return to active lives

SURTAVI 6 Minutes Walk Test >2 yrs

PARTNER 3 20 Point Improvement in KCCQ-OS

TAVR has Less Re-Hospitalisations than SAVR

Rehospitalizations occurred significantly more often in SAVR patients compared to TAVR at one year in low risk patients

Evolut Low Risk Trial

PARTNER 3

TAVR has Improved Resource Utilization

TAVI - IMPROVED RESOURCE UTILIZATION

Windecker, presented at TCT 2019

TAVR is *More Cost Effective Over Time*

Windecker, presented at TCT 2019; Baron S et al, Circulation. 2019;139:877-888

TAVR has a Hemodynamic Advantage over SAVR

Evolut[™] Low Risk Trial

TAVR hemodynamic outcomes are significantly better than SAVR, which maximizes physical capacity postimplant leading to improved quality of life.

JK Forrest et al. Jam Coll Cardiol 2023;

BIOPROSTHETIC DURABILITY CONTROVERSY

This is an ongoing discussion but... THVs have collected more rigorous durability data than any surgical valve !

> Hemodynamic Deterioration

Degeneration

Failure

TAVR VERSUS SURGERY

New Information Over Past 12-24 MONTHS

Longer Term Outcomes From Randomized Clinical Trials

- Notion 8 Year
- PARTNER IIA 5 years
- CoreValve High-Intermediate Risk 5 years
 - Structural Valve Deterioration
 - Bioprosthetic Valve Peformance
- Evolut Low Risk 3 Years

NOTION 8-YEAR ALL COMERS

RANDOMIZED TRIAL IN LOWER RISK PATIENTS

Nordic Aortic Valve Intervention CoreValve NOTION Trial

Objective:	To compare TAVI vs. SAVR in lower risk patients ≥ 70 years eligible for surgery (all-comers population)
Primary Outcome:	Composite rate of all-cause mortality, stroke, or myocardial infarction at 1 year (VARC II-defined)
Secondary Outcomes:	Safety and efficacy (NYHA), echocardiographic outcomes (VARC II-defined)
Design:	Prospective, multicenter, non-blinded, randomized trial
Enrollment Period:	December 2009–April 2013

Source: Søndergaard L, et al. Presented at PCR Valves Conference 2020.

Trial Flow

NOTION – 8 YEAR

ALL COMERS TAVR VERSUS SURGERY

All Cause Mortality

Structural Valve Deterioration

Transthoracic Hemodynamics

Bioprosthetic Valve Failure

Jorgensen, et al. Eur Heart J. 2021;42:2912-9

PARTNER II INTERMEDIATE RISK 5 YEARS

5 YEAR CLINICAL AND ECHOCARDIOGRAPHIC OUTCOMES

COREVALVE - EVOLUT POOLED ANALYSIS OBJECTIVE (Corevalve/Evolut vs Surgery)

Evaluation of the 5-year incidence, outcomes, and predictors of hemodynamic structural valve deterioration (SVD) and late valve performance (BVD) from the *CoreValve US Pivotal and SURTAVI trials*

COREVALVE EVOLUT POOLED ANALYSIS

5-YEAR SVD ADJUSTED FOR COMPETING RISK OF MORTALITY

COREVALVE EVOLUT POOLED ANALYSIS

5-YEAR SVD IN LARGER AND SMALLER ANNULAR DIAMETERS

COREVALVE EVOLUT POOLED ANALYSIS

WORSENED CLINICAL OUTCOMES IN PATIENTS WHO DEVELOP SVD

			HR (95	% CI)	P value	
Pooled Surgery RCT and All TAVI* (N	l=4762)					
All-cause mortality		∎ -	– 1.98 (1.4	2, 2.76)	<0.001	
Cardiovascular mortality			– 1.82 (1.1	7, 2.84)	0.008	
Hospitalization for AV disease/worsening HF			2.11 (1.1	9, 3.74)	0.010	
Composite †			– 1.96 (1.3	8, 2.80)	<0.001	
Surgery RCT (N=971)						
All-cause mortality			── 2.45 (1.4	0, 4.30)	0.002	
Cardiovascular mortality			2.37 (1.1	0, 5.08)	0.027	
Hospitalization for AV disease/worsening HF			<u> </u>	1, 5.98)	0.121	
Composite †			∎ 2.73 (1.5	3, 4.88)	<0.001	
All TAVI* (N=3791)						
All-cause mortality			⊢ 2.24 (1.4	8, 3.38)	<0.001	
Cardiovascular mortality			2.07 (1.2	0, 3.59)	0.009	
Hospitalization for AV disease/worsening HF		į — I	2.34 (1.1	6, 4.71)	0.017	
Composite †			— 1.93 (1.2	3, 3.03)	0.005	
	0.10	1.00	10.00	*RCT and N	Ion-RCT cohorts;	CoreValve 9
on, et al. LBCT ACC 2022	Lower risk with SVD		Higher risk with SVD	Evolut R 3%' † All-cause mortality or hospitalization for AV disease or worsen		rtality or e or worsenin

23

COREVALVE-EVOLUT POOLED ANALYSIS

5 YEAR VALVE PERFORMANCE (BVD CUMULATIVE INCIDENCE)

COREVALVE-EVOLUT POOLED ANALYSIS

5-YR VALVE PERFORMANCE (BVD) IN PATIENTS WITH SMALL AND LARGE ANNULI

COREVALVE-EVOLUT POOLED ANALYSIS

IMPACT OF BVD ON LATE CLINICAL OUTCOMES

	HR (95%	CI) P value
Pooled Surgery and TAVI (N=2099)		
All-cause mortality	-- 1.46 (1.13,	1.88) 0.004
Cardiovascular mortality	—— 1.84 (1.34, 2	2.51) <0.001
Hospitalization for valve disease/worsening HF	— 1.67 (1.23, 2	2.26) 0.001
Composite †	-■- 1.46 (1.16,	1.83) 0.001
Surgery (N=971)		
All-cause mortality	_ 1.58 (1.15, 2	2.19) 0.005
Cardiovascular mortality	2.14 (1.44, 5	3.18) <0.001
Hospitalization for valve disease/worsening HF	1.67 (1.11, 2	2.51) 0.01
Composite †	1.51 (1.12, 2	2.02) 0.007
TAVI (N=1128)		
All-cause mortality	1.34 (0.88 , 2	2.04) 0.18
Cardiovascular mortality	1.51 (0.87, 2	2.60) 0.14
Hospitalization for valve disease/worsening HF	1.82 (1.14, 2	2.91) 0.01
Composite †	1.49 (1.04 , 2	2.15) 0.03

0.10 1.00 10.00 Decreased risk to patients with BVD \longleftarrow Higher risk to patients with BVD

TAVR is the Preferred Treatment for Almost All!

In the past, surgical risk would drive the choice between TAVR and SAVR. With TAVR now approved across the risk spectrum, TAVR is the preferred therapy in patients with symptomatic, severe AS with SAVR reserved for those who are not ideal TAVR candidates.

Surgical or Transcatheter Valve Selection for AVR

Life Expectancy (and Durability) are the Key Metrics

- TAVR will be the treatment of choice for:
 All isolated trileaflet AS patients age > 65 years
- Reasonable treatment option for (awaiting trial results):
 - Small annuli
 - Asymptomatic/moderate AS
 - Aortic regurgitation
 - Bicuspid AS
 - Concomitant CV diseases (multi-valve disease, CAD, AF etc)