Great Debate on MVD 2023 Medical Therapy is Enough

Sripal Bangalore, MD, MHA

Professor of Medicine, Director, Invasive and Interventional Cardiology, Interventional Director, Adult ECMO and MCS Program, Bellevue Hospital Center, Director, Cardiovascular Outcomes Group, New York University School of Medicine

Disclosure Statement of Financial Interest

No relevant disclosures

I did ask people who know David Taggart some advice on how to debate him.....

How I really feel about this debate.....

Alright, I concede.

Surgery has to be the standard for all MVD....

- CABG improve survival
- ISCHEMIA results doesn't apply to CABG
- Medical therapy or PCI doesn't reduce MI

Management of Stable CAD: OMT

Targets significant + nonsignificant lesions

LIMA out survives the patient

PCI without OMT is like.....

Targets significant lesion/s

OMT vs. CABG vs. PCI: Tradeoffs

Surgery has to be the standard for all MVD....

- CABG improves survival
- ISCHEMIA results doesn't apply to CABG
- Medical therapy or PCI doesn't reduce MI

ENOUGHE ETS MOVE ON

The question we are **NOT** debating is....

- Does CABG improves survival in patients with MVD and reduced LV systolic function? STICHES proved CABG does
- Does CABG improve CV death ISCHEMIA shows Invasive strategy (PCI or CABG) has a small (0.3%/year) reduction in CV death

The question we are debating is....

 Does CABG improve overall survival in patients with MVD and preserved LV systolic function?

RCTs in the Pre-OMT Era

CABG Surgery Trialists Collaboration; 10-year outcome

Yusuf et al. Lancet 1994

Lets sprinkle in a touch of medical therapy....

Contemporary Revascularization vs. Medicine SIHD Trials No difference in mortality

ISCHEMIA and ISCHEMIA-CKD trials No difference in mortality

Maron et al. N Engl J Med. 2020 Apr 9;382(15):1395-1407

Bangalore et al. N Engl J Med. 2020;382(17):1608-1618

Routine Revasc vs. Initial Medical Therapy Death

14 RCTs with 14,877 patients followed up for 4.5 years with 64,678 patient years of follow-up

	Revascularization		Medical Therapy				
Trial	Event	Ν	Event	Ν	RR (95% (CI) RR (95% CI)	% Weight
No Stents							
ACME-1	16	115	15	112		- 1.04 (0.51, 2.10)	1.77
ACME-2	9	51	10	50		- 0.88 (0.36, 2.17)	1.08
AVERT	1	177	1	164		0.93 (0.06, 14.81)	0.11
DEFER	5	90	6	91			0.62
MASS-1	8	142	6	72		- 0.68 (0.23, 1.95)	0.78
RITA-2	43	504	43	514	_ + -	1.02 (0.67, 1.56)	4.92
D+L Subtotal (I-	-squared = 0.0%	, p = 0.987)			\diamond	0.96 (0.70, 1.30)	9.30
I-V Subtotal					\diamond	0.96 (0.70, 1.30)	
Stents							
BARI 2D	155	1176	161	1192	<u>#</u>	0.98 (0.78, 1.22)	18.07
COURAGE	284	1149	277	1138		1.02 (0.86, 1.20)	32.09
FAME-2	23	447	23	441	-+-	- 0.99 (0.55, 1.76)	2.63
ISCHEMIA	145	2588	144	2591	#	1.01 (0.80, 1.27)	16.53
ISCHEMIA-CK	D 94	388	98	389		0.96 (0.72, 1.28)	10.98
JSAP	6	192	7	192		- 0.86 (0.29, 2.55)	0.74
MASS-2	58	408	33	203		0.87 (0.57, 1.34)	4.81
TIME	45	153	40	148		1.09 (0.71, 1.67)	4.85
D+L Subtotal (I-squared = 0.0%, p = 0.998)					(0.99 (0.90, 1.10)	90.70
I-V Subtotal					Ŷ	0.99 (0.90, 1.10)	
D+L Overall (I-s	quared = 0.0%,	p = 1.000)			•	0.99 (0.90, 1.09)	100.00
I-V Overall					Q	0.99 (0.90, 1.09)	
Test for Interaction	on P = 0.85						
					.1 1	10	
						· -	
				Favors	Revascularization Fa	avors Medical Therapy	

Bangalore et al. Circulation. 2020 Sep;142(9):841-857

Does CABG Reduce Mortality Over GDMT? BARI-2D CABG Stratum

Frye et al. N Engl J Med. 2009;360(24)

Does CABG Reduce Mortality Over GDMT? MASS //

Hueb W et al. Circulation. 2010;122:949-957

Surgery has to be the standard for all MVD and preserved EF....

CABG improves survival

- Fallacy. Benefit seen in older trials with no med therapy and curves converge at 10-years
- ISCHEMIA results doesn't apply to CABG
- Medical therapy or PCI doesn't reduce MI

Surgery has to be the standard for all MVD and preserved EF....

CABG improves survival

- ISCHEMIA results doesn't apply to CABG
- Medical therapy or PCI doesn't reduce MI

CABG as the Revascularization Modality in Trials of Revasc vs. Medical Therapy

- ISCHEMIA (2020): 530 patients
- BARI 2D (2009): 378 patients
- MASS II (2010): 203 patients

- VA study (1984): 332 patients
- European study (1988): 394 patients
- CASS study (1983): 390 patients

ISCHEMIA in the Context of Prior Trials *Death*

Trial	Publication Year	Number of patients who underwent CABG	Follow-up	Mortality Reduction with CABG	P-value for Mortality Difference
Contemporary Trials					
MASS II (7)	2010	203	10 years	No	0.17
BARI 2D CABG Stratum	2009	378	5 years	No	0.33
ISCHEMIA (4)	2020	530*	4 years	No	
Older trials without GDMT					
CASS Study (9)	1983	390	10 years	No	0.25
VA Study (10)	1984	332	11 years	No	0.45
European Study (11)	1988	394	12 years	Yes	0.02

Surgeon's Reaction to ISCHEMIA and ISCHEMIA EXTEND

ISCHEMIA

ISCHEMIA results do not apply to CABG

ISCHEMIA EXTEND: CV Death

ISCHEMIA-EXTEND results must be due to CABG

Surgery has to be the standard for all MVD and preserved EF....

CABG improves survival

- ISCHEMIA results doesn't apply to CABG
 - Fallacy. More patients in ISCHEMIA underwent CABG than any trial of revasc vs. med therapy
- Medical therapy or PCI doesn't reduce MI

Surgery has to be the standard for all MVD and preserved EF....

- CABG improves survival
- ISCHEMIA results doesn't apply to CABG
- Medical therapy or PCI doesn't reduce MI

Therapies proven (by RCTs) to reduce CV Events

All patients with SIHD should receive a set of lifestyle interventions and medications:

- Diet
- Weight loss
- Regular physical activity
- If a smoker, smoking cessation
- Aspirin 75-162mg daily
- High-intensity statin Rx
- If hypertensive, Rx to achieve a BP <140/90
- If diabetic, appropriate glycemic control

2012 ACC/AHA SIHD Guidelines; 2013 ACC/AHA Cholesterol Guidelines

Newer Therapies with Potential to Further Reduce Events

Effect of OMT on Survival in SYNTAX

Iqbal et al. Circulation 2015;131:1269-1277

Revascularization Reduces Spontaneous MI ISCHEMIA: Invasive vs. Conservative

Type 1 MI was Reduced by Both PCI and CABG in ISCHEMIA

Maron et al. N Engl J Med. 2020 Apr 9;382(15):1395-1407

Chaitman et al. ACC 2020

Routine Revasc vs. Initial Medical Therapy Other Outcomes

Bangalore et al. Circulation. 2020 Sep;142(9):841-857

Surgery has to be the standard for all MVD and preserved EF....

- CABG improves survival
- ISCHEMIA results doesn't apply to CABG
- Medical therapy or PCI doesn't reduce MI
 - Fallacy

Surgery has to be the standard for all MVD and preserved EF....

- CABG improves survival
 - Fallacy. Benefit seen in older trials with no med therapy and curves converge at 10-years
- ISCHEMIA results doesn't apply to CABG
 - Fallacy. More patients in ISCHEMIA underwent CABG than any trial of revasc vs. med therapy
- Medical therapy or PCI doesn't reduce MI

The question we are **NOT** debating is....

 Does CABG improves survival in patients with MVD and reduced LV systolic function? STICHES proved CABG does

2021 ACC/AHA/SCAI Revascularization Guidelines

LVSD: CABG is recommended to improve survival

Lawton JS, Tamis-Holland JE, Bangalore S, et al. J Am Coll Cardiol. 2021

The question we are **NOT** debating is....

Does CABG improve CV death ISCHEMIA (and other meta-analysis) shows Invasive strategy (PCI or CABG) has a small (0.3%/year) reduction in CV death

2021 ACC/AHA/SCAI Revascularization Guidelines

Multivessel-CAD: revascularization is reasonable to lower the risk of cardiovascular events such as spontaneous MI, unplanned urgent revascularizations, or cardiac death

Lawton JS, Tamis-Holland JE, Bangalore S, et al. J Am Coll Cardiol. 2021

The question we are debating is....

 Does CABG improves survival in patients with MVD and preserved LV systolic function?

2021 ACC/AHA/SCAI Revascularization Guidelines

3V-CAD: CABG maybe reasonable to improve survival

3V-CAD: Usefulness of PCI to improve survival is uncertain

Lawton JS, Tamis-Holland JE, Bangalore S, et al. J Am Coll Cardiol. 2021

My final thought....

with or without PCI

Medical therapy ^A is enough for most patients with MVD and preserved LV function with CABG reserved for those with complex coronary disease