

MAY 6-9, 2023 GRAND WALKERHILL SEOUL, KOREA

Left Main and Multivessel Disease – Practice Changes after ISCHEMIA

Fahim H. Jafary, M.D., F.A.C.C., F.S.C.A.I.

Diplomate, American Board of Medicine – Cardiovascular Diseases & Interventional Cardiology Diplomate, Certification Boards of Nuclear Cardiology & Cardiovascular CT Senior Consultant Department of Cardiology NHG Heart Institute, Tan Tock Seng Hospital, Singapore

No conflicts of interest

I DO PCI FOR A LIVING

INTERVENTIONAL CARDIOLOGIST CT CARDIOLOGIST NUCLEAR CARDIOLOGIST

My 'hats'

HAS ISCHEMIA CHANGED PRACTICE FOR LEFT MAIN DISEASE?

HAS ISCHEMIA CHANGED PRACTICE FOR MULTIVESSEL DISEASE

Non-left main disease

HAS ISCHEMIA CHANGED PRACTICE FOR LEFT MAIN DISEASE?

ISCHEMIA trial

Maron DJ et al. N Engl J Med 2020; 382:1395-1407

HOSPITAL

LEFT MAIN DISEASE WAS EXCLUDED

FOR LEFT MAIN DISEASE, REVASCULARIZATION REMAINS THE PREFERRED STRATEGY

Progress Study of 590 Consecutive Nonsurgical Cases of Coronary Disease Followed 5-9 Years

II. Ventriculographic and Other Correlations

By Albert V. G. Bruschke, M.D., William L. Proudfit, M.D., and F. Mason Sones, Jr., M.D.

. MANNON SONES, JR., M.D.

Relation Between Coronary Arteriogram, Left Ventricular Angiogram, and Mortality

DG ALBERT V	5-year cardiac mortality* (%)					
Coronary arteriogram	Normal LV	Localized "scar" tissue	Aneurysm†	Diffuse "scar" tissue		
Left main coronary involvement	57 (21)	50 (8)	50 (2)	100 (4)		
1-vessel involvement	7(100)	17(49)	43 (14)	60(10)		
2-vessel involvement	33 (87)	31(58)	50(26)	57 (41)		
3-vessel involvement	36 (45)	50 (30)	38 (8)	88 (24)		

*Total number of cases in each category in parentheses. †Cases with additional diffuse "scar" tissue included in the last category. See text.

5 YEAR MORTALITY WITH MEDICAL THERAPY ~ 50%

Effect of coronary artery bypass graft surgery of of 10-year results from randomised trials by the Bypass Graft Surgery Trialists Collaboration*

Salim Yusuf, David Zucker, Peter Peduzzi, Lloyd D Fisher, Timothy Takaro, J Ward Ken-Thomas Killip, Eugene Passamani, Robin Norris, Cynthia Morris, Virendra Mathur, Ed J

Subgroup	Overall numbers	3	Medical treatment	Odds ratio	p for CABG surgery vs	
	Deaths	Patients	mortality rate (%)	(95% CI)	medical treatment	
Vessel disease						
One vessel	21	271	99	0 54 (0 22–1 33)	0 18	
Two vessels	92	859	11 7	0 84 (0 54–1 32)	0 45	
Three vessels	189	1341	17 6	0 58 (0 42-0 80)	<0 001	
Left main artery	39	150	36 5	0 32 (0 15–0 70)	0 004	
		Y (VS. MEDIC	AL THERAPY) BY 68% IN I	EFT MAIN DISEASE		
		. (

Yusuf S et al. Lancet 1994, 344, 563–570

Tan Tock Seng

Yusuf S et al. Lancet 1994, 344, 563–570

Percutaneous coronary intervention with drug-eluting stents versus coronary artery bypass grafting in left main coronary artery disease: an individual patient data

HOW TO TREAT LEFT MAIN DISEASE

Niels R. Holm, Per H. Nielsen, Greag W. Stone, Joseph F. Sabik, Eugene

A Spontaneous myocardial infarction

PATIENT LEVEL METAANALYSIS

SYNTAX PRECOMBAT, NOBLE, EXCEL

5 YEAR FOLLOW-UP

SPONTANEOUS MI 🗸

REPEAT REVASCULARIZATION

STROKE 个

WITH CABG

Sabatine MS et al. Lancet 2021;398(10318):2247-2257

5.

HEART INSTITUTE

Follow-up (years)

2

2018 ESC/EACTS Guidelines on myocardial revascularization

Recommendations according to extent of CAD	CABG		PCI	
	Class ^a	Level ^b	Class ^a	Level ^b
Left main CAD				
Left main disease with low SYNTAX score (0 - 22).	I	А	I	А
Left main disease with intermediate SYNTAX score (23 - 32).	I.	А	lla	А
Left main disease with high SYNTAX score (≥33). ^c	I.	A	ш	В

ACC/AHA/SCAI CLINICAL PRACTICE GUIDELINE

2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

Left main CAD					
1	B-R	 In patients with SIHD and significant left main stenosis, CABG is recommended to improve survival.⁹⁻¹² 			
2a	B-NR	 In selected patients with SIHD and significant left main stenosis for whom PCI can provide equivalent revascularization to that possible with CABG, PCI is reasonable to improve survival.⁹ 			

"... for whom PCI can provide equivalent revascularization to that possible with CABG ... "

Lawton JS et al. Circulation. 2022;145:e18-e114

Neumann FJ et al. European Heart Journal (2019) 40, 87–165

FOR SYMPTOM RELIEF

FOR IMPROVING PROGNOSIS

PCI ALWAYS APPROPRIATE WHEN SYMPTOMATIC

THE NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Health-Status Outcomes with Invasive or Conservative Care in Coronary Disease

John A. Spertus, M.D., M.P.H., Philip G. Jones, M.S., David J. Maron, M.D.,

Sean M. O'Brien, Ph.D., Harmony R. Reynolds,

DURABLE BENEFIT IN 🕹 ANGINA

Spertus JA et al. N Engl J Med 2020; 382:1408-1419

Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial

Rasha Al-Lamee, David Thompson, Hakim-Moulay Dehbi, Sayan Sen, Kare Tang, John Davies, Thomas Keeble, Michael Mielewczik, Rasha Al-Lamee, David Thompson, Hakim-Moulay Dehbi, Sayan Sen, Kare Tang, John Davies, Thomas Keeble, Michael Mielewczie

Al-Lamee R et al. Lancet 2018; 391: 31-40

Fan Tock Seng

FOR SYMPTOM RELIEF

FOR IMPROVING PROGNOSIS

PCI FOR <u>MOST PATIENTS</u> WITH STABLE CAD DOES NOT ALTER PROGNOSIS

Maron DJ et al. N Engl J Med 2020; 382:1395-1407

Tan Tock Seng

Primary Outcome: CV Death, MI, hospitalization for UA, HF or 30% resuscitated cardiac arrest

Secondary Outcome: CV Death or MI

National Healthcare Group HEART INSTITUTE

Myocardial Infarction

ORIGINAL RESEARCH ARTICLE

Survival After Invasive or Conservative Management of Stable Coronary Disease

Judith S. Hochman[®], MD; Rebecca Anthopolos, DrPH; Harmony R. Reynolds[®], MD; Sripal Bangalore[®], MD, MHA; Yifan Xu, MPH; Sean M. O'Brien, PhD; Stavroula Mavromichalis, MS; Michelle Chang, MPH; Aira Contreras, MA; ISCHEMIA-EXTEND (INTERIM REPORT)

 \bigcirc

MEDIAN 5.7 YEAR FOLLOW-UP

Hochman JS et al. Circulation. 2023;147:8–19

Primary Outcome: Influence of subgroups

<<Favors INV Favors CON>>

PCI FOR <u>MOST PATIENTS</u> WITH STABLE CAD DOES NOT ALTER PROGNOSIS

LEFT MAIN EXCLUDED

LOW EF ≤ 35% EXCUDED

Perera D. et al. N Engl J Med 2022;387:1351-60.

Why was treating ischemia NOT prognostic?

https://doi.org/10.1007/s11886-022-01725-1

PUBLIC HEALTH POLICY (SS VIRANI AND D MAHTTA, SECTION EDITORS)

Ischemia Trial: Does the Cardiology Community Need to Pivot or Continue Current Practices?

ISCHEMIA IS A SURROGATE FOR THE DISEASE PROCESS (ATHEROSCLEROSIS)

Fahim H. Jafary¹ · Ali H. Jafary²

Jafary FH et al. Curr Cardiol Rep. 2022 Aug;24(8):1059-1068

revascularization

2018 ESC/EACTS Guidelines on myocardial

ESC/EACTS GUIDE

ACC/AHA/SCAI CLINICAL PRACTICE GUIDELINE

2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

		ESC 2018 ACC/AH Class Level Class		ACC/AHA 2	AHA 2021	
				Class	Level	
For Prognosis	Left main > 50%	L I	Α	I (CABG)	B-R	
				<mark>IIA (<u>PCI)</u></mark>	B-NR	
	Single or double vessel disease	I	Α	IIB	B-R	
	involving proximal LAD					
	Single or double vessel disease	I.	С	III (no	B-NR	
	NOT involving proximal LAD			benefit)		
	Multivessel disease + EF \leq 35%	I.	Α	I (CABG)	B-R	
	Multivessel disease, EF 35-50%			IIA (CABG)	B-NR	
	Multivessel disease, normal EF			IIB (CABG,	B-R	
				PCI)		
	Large ischemia (> 10%) or	I	В			
	abnormal iFR/FFR					
	Single remaining vessel > 50%	I	С			
For reduction of events	Multivessel disease			IIA (CABG	B-R	
(MI, urgent				or PCI)		
revascularization)						
For Symptoms	Refractory angina	I	Α	T	Α	

National Healthcare Group HEART INSTITUTE European Heart Journal (2019) 40, 87–165

Circulation. 2022;145:e18-e114

		ESC 2018		ACC/AHA 2021	
		Class	Level	Class	Level
For Prognosis	Left main > 50%	- I -	Α	I (CABG)	B-R
				<mark>IIA (PCI)</mark>	B-NR
	Single or double vessel disease	L I	Α	IIB	B-R
	involving proximal LAD				
	Single or double vessel disease	- I -	С	III (no	B-NR
	NOT involving proximal LAD			benefit)	
	Multivessel disease + EF ≤ 35%	I	Α	I (CABG)	B-R
	Multivessel disease, EF 35-50%			IIA (CABG)	B-NR
	Multivessel disease, normal EF			IIB (CABG,	B-R
				PCI)	
	Large ischemia (> 10%) or abnormal iFR/FFR	I	В		
	Single remaining vessel > 50%	I	С		
For reduction of events (MI, urgent revascularization) For Symptoms	Multivessel disease			IIA (CABG or PCI)	B-R
	Refractory angina	I	A	1	Α

DOWNGRADE

LESS ISCHEMIA CENTRIC

Conclusions – what's changed after ISCHEMIA?

- Clinical practice for ACS has not changed
- Clinical practice for left main disease has not changed \rightarrow revascularize
- Clinical practice for non left main disease <u>HAS changed</u>
 - Revascularization is still reasonable to \downarrow symptoms
 - Revascularization does not improve prognosis in MOST patients
 - So an initial medical therapy approach is reasonable
 - CAUTION: doesn't mean revascularization is BAD, just means you can start with tablets
- Unanswered questions:
 - Are the HIGHEST risk patients really medically manageable?
 - Will left main disease be "medically treatable" in the future?
 - What will the 10 year follow-up show?
 - Low EF without much angina

