Optimal MSA for LM Crush Technique:

New Criteria Any Difference in Any 2 Stent Technique?

Jung-Min Ahn, MD.

Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Two Stent Technique in Randomized Trials

Randomized Trials For True LM Bifurcation

DK-CRUSH V Trial favored DK-CRUSH

Target Lesion Failure

EBC-MAIN Trial favored One-Stenting

Two Stenting: 47% in Provisional Group

Two Stenting: 22% in Provisional Group

2839

LM IVUS MSA Criteria

Asan Medical Center Criteria

Kang SJ, et al. Circ Cardiovasc Interv 2011;4:562-9

LM IVUS Optimization Criteria

EXCEL Criteria

EXCEL Trial Analysis A. Maehara TCT 2018

Spain Registry Criteria

EuroIntervention. 2020 Jun 25;16(3):210-217

Optimal MSA Criteria For LM Crush Technique Based on Long-Term (5-Year) Clinical Outcomes

292 Patients

- Treated By Crush Technique
- Complete IVUS Imaging

35 MACES at 5 Years

Patients with unprotected LM bifurcation lesion who underwent upfront two-stent technique from March 2005 to Dec 2019 (N=479)

	5 patient underwent simultaneous kissing stents 15 patients underwent classic T-stenting 88 patients without IVUS-guidance 18 patients without poststenting IVUS from LAD-pullback 61 patients without poststenting IVUS from LCX-pullback		
◆ Patients who underwent two-stent PCI with cru	ish technique and had complete poststenting		

IVUS images from both LAD and LCX pullback (N=292)

Baseline Characteristics

Variables	Total	MACE (-)	MACE (+)	P value
	(n = 292)	(n=257)	(n=35)	
Age, year	64.0 ± 9.9	64.2 ± 9.8	63.0 ± 10.3	0.50
Male sex	224 (76.7%)	197 (76.7%)	27 (77.1%)	>0.99
Current smoker	57 (19.5%)	46 (17.9%)	11 (31.4%)	0.10
Hypertension	194 (66.4%)	173 (67.3%)	21 (60.0%)	0.50
Diabetes	98 (33.6%)	83 (32.3%)	15 (42.9%)	0.29
Dyslipidemia	187 (64.0%)	166 (64.6%)	21 (60.0%)	0.73
LVEF, %	62.2	62.7	60.0	0.11
LVH	72 (25.8%)	57 (23.3%)	15 (44.1%)	0.02
2-vessel disease	163 (55.8%)	141 (54.9%)	22 (62.9%)	
3-vessel disease	129 (44.2%)	116 (45.1%)	13 (37.1%)	
Medina classification				0.71
1,1,1	222 (76.0%)	197 (76.7%)	25 (71.4%)	
0,1,1	49 (16.8%)	42 (16.3%)	7 (20.0%)	
1,0,1	12 (4.1%)	11 (4.3%)	1 (2.9%)	
1,1,0	9 (3.1%)	7 (2.7%)	2 (5.7%)	

Procedural Characteristics

Variables	Total	MACE (-)	MACE (+)	P value
	(n = 292)	(n=257)	(n=35)	
Pre-lesion modification	252 (86.0%)	221 (86.0%)	30 (85.7%)	>0.99
Total stent number	2.7 ± 0.8	2.7 ± 0.8	2.7 ± 0.7	0.83
Main branch				
Number of stents	1.5 ± 0.7	1.6 ± 0.7	1.5 ± 0.6	0.75
Mean stent diameter, mm	3.6 ± 0.3	3.7 ± 0.3	3.6 ± 0.3	0.28
Length of stents, mm	28.0 ± 6.1	28.1 ± 6.2	27.5 ± 6.0	0.61
Post-dilation with NC balloon	260 (89.3%)	230 (89.8%)	30 (85.7%)	0.65
Post-dilation, balloon size	3.7 ± 0.4	3.7 ± 0.4	3.6 ± 0.4	0.21
Maximal applied pressure	20.6 ± 4.7	20.6 ± 4.6	20.7 ± 5.2	0.87
Side branch				
Number of stents	1.1 ± 0.4	1.1 ± 0.4	1.1 ± 0.4	0.92
Mean stent diameter, mm	3.1 ± 0.3	3.1 ± 0.3	3.1 ± 0.3	0.97
Length of stents, mm	21.8 ± 7.1	21.4 ± 7.0	24.3 ± 7.6	0.02
Post-dilation with NC balloon	245 (84.5%)	217 (84.8%)	28 (82.4%)	0.91
Post-dilation, balloon size	3.0 ± 0.3	3.1 ± 0.3	3.0 ± 0.3	0.05
Maximal applied pressure	17.8 ± 4.8	17.7 ± 4.8	18.7 ± 4.5	0.24
Final kissing balloon inflation	292 (100%)	257 (100%)	35 (100%)	>0.99
Second Generation DES	240 (82.2%)	212 (82.5%)	7 (80.0%)	>0.99

IVUS Findings

Variables	Total	MACE (-)	MACE (+)	P value
	(n = 292)	(n=257)	(n=35)	
Distal LM				
MSA, mm ²	10.9 ± 2.2	11.0 ± 2.2	10.4 ± 2.0	0.14
EEM area at the MSA site, mm ²	23.8 ± 4.1	23.9 ± 4.2	22.9 ± 4.1	0.18
MSA < 11.8 mm ²	189 (64.7%)	163 (63.4%)	26 (74.3%)	0.28
Stent expansion index	46.4 ± 7.2	46.4 ± 7.3	46.0 ± 7.0	0.73
LAD ostium				
MSA, mm ²	8.2 ± 1.7	8.2 ± 1.7	7.6 ± 1.2	0.004
EEM area at the MSA site, mm ²	17.3 ± 3.4	17.4 ± 3.4	16.5 ± 3.2	0.11
MSA < 8.3 mm ²	161 (55.1%)	133 (51.8%)	28 (80.0%)	0.003
Stent expansion index	47.7 ± 7.6	47.8 ± 7.9	46.7 ± 5.7	0.27
LCX ostium, by LCX pullback				
MSA, mm ²	5.9 ± 1.4	6.0 ± 1.5	5.3 ± 1.1	0.007
EEM area at the MSA site, mm ²	13.2 ± 3.2	13.3 ± 3.0	12.8 ± 4.0	0.53
MSA < 5.8 mm ²	141 (48.3%)	116 (45.1%)	25 (71.4%)	0.006
Stent expansion index	45.7 ± 8.6	46.0 ± 8.5	43.4 ± 8.6	0.08

Distribution of MSA

CVRF

Distribution of MSA

CVRF

Relationship between distal LM MSA and MACEs

8th TCTAP

Relationship between LAD ostial MSA and MACEs

11

Relationship between LCX ostial MSA and MACEs

IVUS-measured MSA (mm²)

28th TCTAP

LM<11.8 mm²: 64.7%

(%)

5

No. at risk

— LM MSA < 11.8 mm²

— LM MSA ≥ 11.8 mm²

30

20

10

0 0

LAD<8.3 mm²: 55.1%

— LAD MSA < 8.3 mm² — LAD MSA ≥ 8.3 mm² 131 128 125 114 94 83

No. at risk

No. at risk

Incidence of Under-expansion of LM Segments and Outcomes

Incidence of Under-expansion of LM Segments and Outcomes

28th TCTAP

Incidence of Under-expansion of LM Segments and Outcomes

CVRF

Summary

- In patients undergoing LM two-stenting with the crush technique, The final IVUS-MSA within LAD and LCX ostium showed a linear relationship with the hazard of 5-year MACE: larger IVUS-MSA was associated with better clinical outcomes.
- The optimal IVUS-MSA criteria that predicted 5-year MACE on a segmental basis were 11.8 mm² for the distal LM, 8.3 mm² for the LAD ostium, and 5.7 mm² for the LCX ostium.
- Obtaining a sufficiently large MSA could be pivotal in preventing adverse clinical events in patients undergoing LM two-stenting procedures.
- Therefore, interventionist should make effort to achieve sufficient MSA under the IVUS guidance.