Why and How to Apply Imaging Device for Calcified Lesion in PCI

Sunao Nakamura MD PhD

FACC, FESC, FAHA, FSCAI

Shotaro Nakamura MD, Naoyuki Kurita MD, Satoko Tahara MD, Masaaki Okutsu MD, Tomohiko Sato MD, Toru Naganuma MD, Satoru Mitomo M.D. Hiroyoshi Kawamoto MD, Kentaro Tanaka MD, Satoshi Matsuoka MD, Hiroaki Nakajima MD, Hirokazu Onishi MD, Yusuke Watanabe MD, Koji Hozawa M.D., Toru Ohuti M.D., Hiroto Yabushita MD,

The New Tokyo Hospital ; Japan Tokyo

Rocks on the Road

Diamond Back

OPN-HP-balloon

Shock Wave

Cutting Balloon

LASER

Choice of Appropriate Devices is a KEY

See a Long Way Ahead

Why imaging device is IMPORTANT ? Because...

If we use this, we would see "Beyond THE SEEN" "Behind the SEEN"

Case 1 : LMT stenosis with severely calcified lesion

60 y.o. male ESRD on HD patients with severe discomfort on exertion. LMT bifurcation area stenosis with severely calcified lesion

Protruded Ca. and very thick Ca. on the ceiling of LMT

d

b

a

Can see the shape, thickness and precise location of calcification

PCI with Rota. and Cypher

ACCURATE PLANNED INTENTIONAL DIRECTIONAL CUTTING

Case 1 : LMT stenosis with severely calcified lesion

60 y.o. male ESRD on HD patients: Final Angiogram

Story Continued !!

9 month Later after PCI : 61 y.o. male ESRD on HD patients:

b

a

Significant stent recoil due to severe calcification

С

FD-OCT Assessment of Stent Constriction 9-M after SES Implantation

in Patient With Hemodialysis

Y. Fujino, S. Nakamura, M Costa, et al. JACC Intervention. 2013

Protruding Calcified plaque

FD-OCT Assessment of Stent Constriction 9-M after SES Implantation

in Patient With Hemodialysis

Y. Fujino, S. Nakamura, M Costa, et al. JACC Intervention. 2013

Post-SES

F/U 9 months

FD-OCT Assessment of Stent Constriction 9-M after SES Implantation

in Patient With Hemodialysis

Y. Fujino, S. Nakamura, M Costa, et al. JACC Intervention. 2013

Impact of Rotational Atherectomy for Heavily Calcificated Unprotected Left Main Disease: The New Tokyo Registry.

H.Yabushita, S.Nakamura et.al Ciculation Jounal 2013

28th TCTA

Calcification in LMT !!!

In case of hemodialysis patients, it is highly probable to cause stent recoil at chronic phase despite of ablation of calcified lesion using rotational atherectomy. Therefore they are prone to restenosis.

Yusuke Fujino

M.D. PhD FACC

JACC Intervention. 2013

Hiroto Yabushita

M.D. PhD

Ciculation Jounal 2013

Diamondback

The Diamondback uses a differential sanding mechanism of action to reduce plaque while potentially minimizing damage to the medial layer of the vessel. Softer tissue flexes away from the crown while fibrotic tissue or arterial calcium is engaged and treated facilitating stent deployment. A drive shaft with an eccentrically mounted diamond-coated crown provides proximal and distal sanding to reduce occlusive material and restore luminal **"Diamndback"** :Very fine diamond-coated crown provides proximal and distal sanding to reduce occlusive material and restore luminal.

Corresponding OCT cross-sectional frames : Diamond Back

Diamond Backs : Funny movement but follows the rule of GW bias

8th TCTAP

CVRF

Diamond Backs follows the rule of GW bias !!

Sometimes go to ... Even in the area of soft plaque

Pre

Post

"hollowed out area" definitely in the normal area

Case 2 : LMT Ost. ISR with eccentric NIH : and some Ca.

73 yo Male, EF 55.4% (antero-septal moderate hypo) Cre 0.78mg/dl (eGFR 68)

Significant ISR in Proximal, BOTTOM of LMT : Not Good Target of Rota

Eccentric NIH with neoatheroscrelosis

Neoatherosclerotic change

➡ Fibrotic plaque

Neoatherosclerotic change

Deep calcification Lipid plaque

Neoatherosclerotic change

➡ Lipid plaque

CVRF

Lesion preparation with orbital atherectomy: Diamondback

Diamondback (1.25mm): 120,000 rpm

According to the wire bias, Nicely debulked eccentric NIH

A'

Additional lesion preparation with cutting and non-compliant balloons

After additional lesion preparation: More larger lumen achieved

Stent implantation after the effective plaque volume reduction

After Stent

CB and NC pre-Dila.

OCT after Stent

a'

Because of the effective plaque reduction, larger lumen could be achieved, even after multiple layered stenting.

Shock Wave

Mechanism

High-speed sonic pressure wave ➡ similar to urologic extracorporeal lithotripsy. (soft tissue: pass through, calcification: disrupt)

- 1. Balloon inflation (4atm, 10 sec): Contacting vessel wall, delivering optimal energy.
- 2. Balloon inflation up to 6atm (breaking calcium)
- 3. Repeat the cycle (maximum 8 cycles / catheter)

Case 3 : Shock wave in Diffused calcified LAD

Proximal to mid LAD: diffusely and severely calcified lesion

OCT image before Shock wave

Proximal LAD

Thick calcification + Lotus root appearance (recanalized total occlusion)

Diffusely and severely calcified LAD

Large arc (>180°) Thick calcification

Shock wave in calcified LAD

(Maximum: 8 sessions/ catheter)

Proximal lesion

OCT after lesion preparation with shock wave

В

D

Cracks of thick calcification

Lesion with lotus root appearance

 Dissection and lumen expansion

Crack of thick calcification

Crack of thick calcification

Crack of thick calcification

28th TCTAP

OCT after DES implantation

Diffusely and severely calcified LAD

Very Optimal stent Expansion & Optimal stent apposition

MSA: 5.08 mm² (Segment treated with 2.75mm DES) DES implantation for the severely calcified lesion after lesion preparation with shock wave

Final angiography

Case 4. Severely calcified LMT, LAD and LCx lesions

77 year-old, male Stable angina, Coronary risk factors: hypertension, dyslipidemia

Proximal to mid LCx: diffusely and severely calcified lesions Proximal to mid LAD: diffusely and severely calcified lesions

Baseline OCT findings LCX

After pre-dilatation with 2.0 NC balloon baseline OCT

Diffusely and severely calcified LCx

Large arc (>270° degrees) Thick calcification

Shock wave for the LCX mid to LMT

Additional shock wave for the proximal LCx to LMT Balloon size up: 2.5 ⇒ 3.0 mm

DES implantation for the LMT to the proximal LCx

LMT true bifurcation lesion (1.1.1) → Systemic double stenting

Proximal LCx

Proximal LCx to LMT

CVR

OCT findings: mid LCx to LMT

Diffusely and severely calcified LCx

Optimal stent expansion Optimal stent apposition

MSA: 4.26 mm² (Segment treated with 2.5mm DES)

After bailout stenting
→ No residual dissection
extended distally

Lesion preparation with shock wave: LAD

Lesion preparation with shock wave

OCT findings after lesion preparation with shock wave

Some part ; unusual expanded lesion without cracks.

Crack of thick calcification

Lesion was expanded; however cracks of calcification were not obviously observed.

Crack of thick calcification

OCT findings: mid to proximal LAD

Diffusely and severely calcified LAD

Optimal stent expansion Optimal stent apposition

MSA: 5.39 mm² (Segment treated with 3.0mm DES)

No dissection extended distally

DES implantation for the severely calcified lesion after lesion preparation with shock wave

Final angiography

Case 5 : High pressure Cutting Balloon

Case 5 : Very Calcified LAD Stenosis

Rota burr (1.75 mm) crossed the lesion.

Subsequent pre-dilatation with 2.5 mm NC balloon

at high pressure (24atm)

➡ The lesion could not

be expanded sufficiently.

Additional lesion preparation: OPN NC balloon

2 Additional pre-dilatation: 3.0 mm (NC), 24atm Additional pre-dilatations

OPN NC balloon: 2.5 mm, **40atm**

NC balloon: 3.0 mm, **24atm**

 Even multiple high pressure pre-dilatations, the lesion could not be expanded sufficiently.

Additional lesion preparation : With HP cutting balloon

Additional pre-dilatation: Cutting balloon 3.0 mm, 26atm Considering severely calcified lesions, pre-dilatation with cutting balloon at high pressure was additionally attempted.

> Very High Pressure Cutting Balloon

The lesion could be expanded.

Very High Pressure Cutting Balloon for Calcified Lesion

Finally, DCB ballooning : after cutting and NC

Drug coated balloon

20

According to the IVUS findings showing optimal lesion preparation, the lesion was treated with DCB

Expansion force: NC balloon vs. Cutting balloon

8th TCTAP

Expansion force: NC balloon vs. Cutting balloon

Expansion force is divided by balloon surface area contacting the lesion.

Cutting balloon can contact the lesion at the point of the blades, resulting in stronger expansion force creating cracks on the calcifications

Calcified Nodule

28th TCTAP

Case 6 : 60's Male HD ; SAP, LMT ISR with calcified nodule

HD patients, Coronary risk factors: HTN, DL, IDDM, EF 55.4% (antero-septal Cre 5.63mg/dl (eGFR 9), BNP 1374.0pg/ml LDL-chol 87mg/dl, HDL-chol 32mg/dl, A1c 6.6% EF 48% (modified Simpson),

Significant ISR in proximal LMT

IVUS images : Baseline !!

28th TCTAP

CVRF

IVUS images before and after OAS

Diamondback for calcified nodule in LMT

After OAS

lesion modification with Diamondback

Case 6 : 60's Male HD ; SAP, LMT ISR with calcified nodule

Additional lesion preparation And Stenting

3.5 mm(CB), 20atm

4.0/mm (NC), 24atm

Stent implantation and optimization

Case 6 : 60's Male HD ; SAP, LMT ISR with calcified nodule

Final angio. → Excellent: results with Optimal stent expansion and apposition MSA: 10.35mm²

Final

Case 6: 60's Male HD; SAP, LMT ISR with calcified nodule

Unfortunately...1 Year later, Pt. symptom recurrence !! RESTENOSIS !!

The patient was sent to CABG

Making light of foundation works, Buildings are destined to collapse.

Pre PCI...Pre Stenting !!

Niccolò Machiavelli 1469-1527

『Il Principe: 군주론』