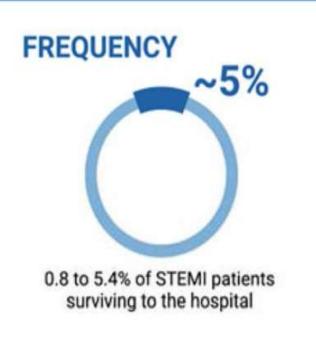
Clinical Outcomes of Unprotected Left Main STEMI

MacKay Memorial Hospital, Taiwan


Chun-Wei Lee

Outline

- 1. Introduction
- 2. Treatment trend
- 3. Literature review
- 4. New Predictor
- 5. Asian LM STEMI data

Left Main Culprit In STEMI

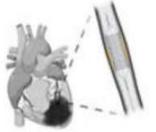
CHARACTERISTICS

0.8-5.4% of STEMI pts

Older

History of coronary artery disease Lower left ventricular ejection fraction Cardiogenic shock

Cardiac arrest


Left Main Culprit In STEMI

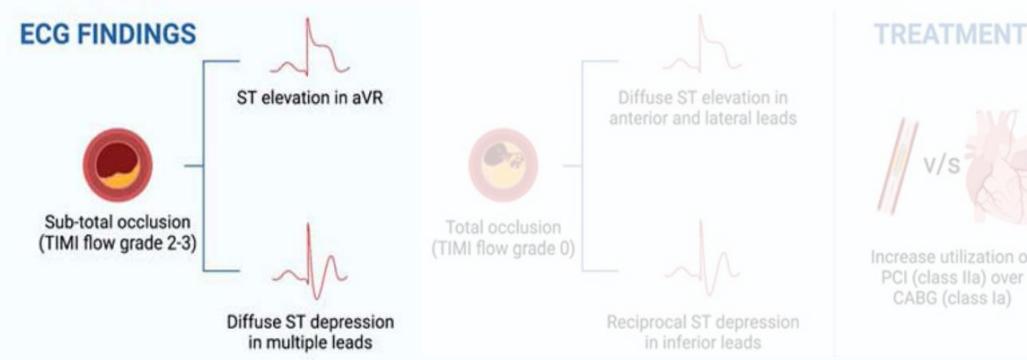
FREQUENCY ~5% 0.8 to 5.4% of STEMI patients surviving to the hospital

CHARACTERISTICS

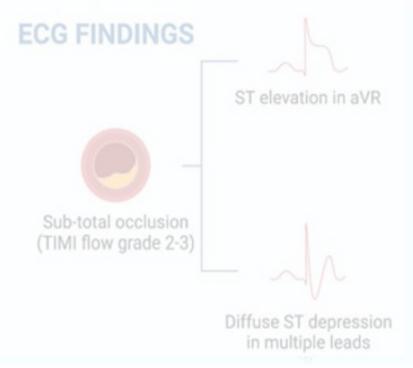
Older

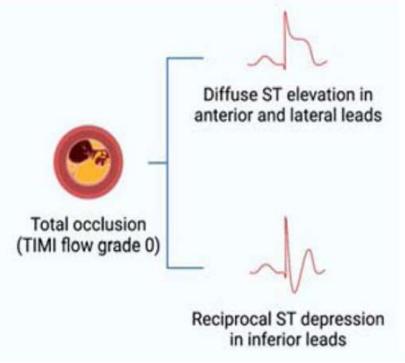
History of coronary artery disease

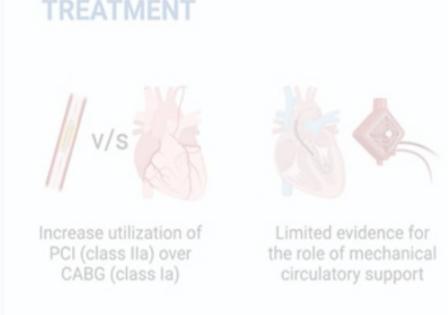
Lower left ventricular ejection fraction



Cardiogenic shock


Cardiac arrest





Sub-total: STE in aVR STD in multiple leads Reciprocal STD in inf leads Poor prognosis with low pre-PCI TIMI flow grade

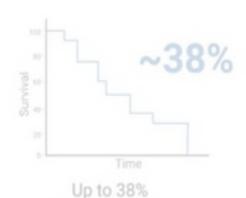
Stub-tota Prognosis STE in aVR STD in multiple

Total: Diffuse STE Reciprocal STD in inf leads

Higher mortality risk in unprote versus protected left main culprit

High mortality in those with

1. Cardiogenic shock


2. Low initial TIMI flow grade

Diffuse ST depression in multiple leads Reciprocal ST depression in inferior leads

Limited evidence for the role of mechanical circulatory support

OUTCOME

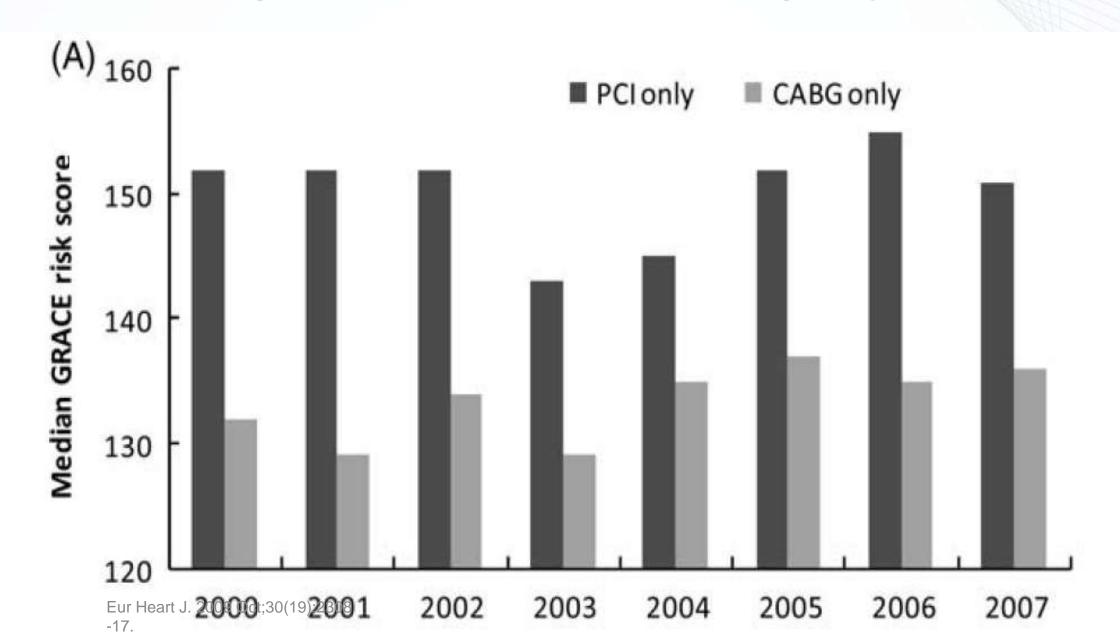
in-hospital mortality

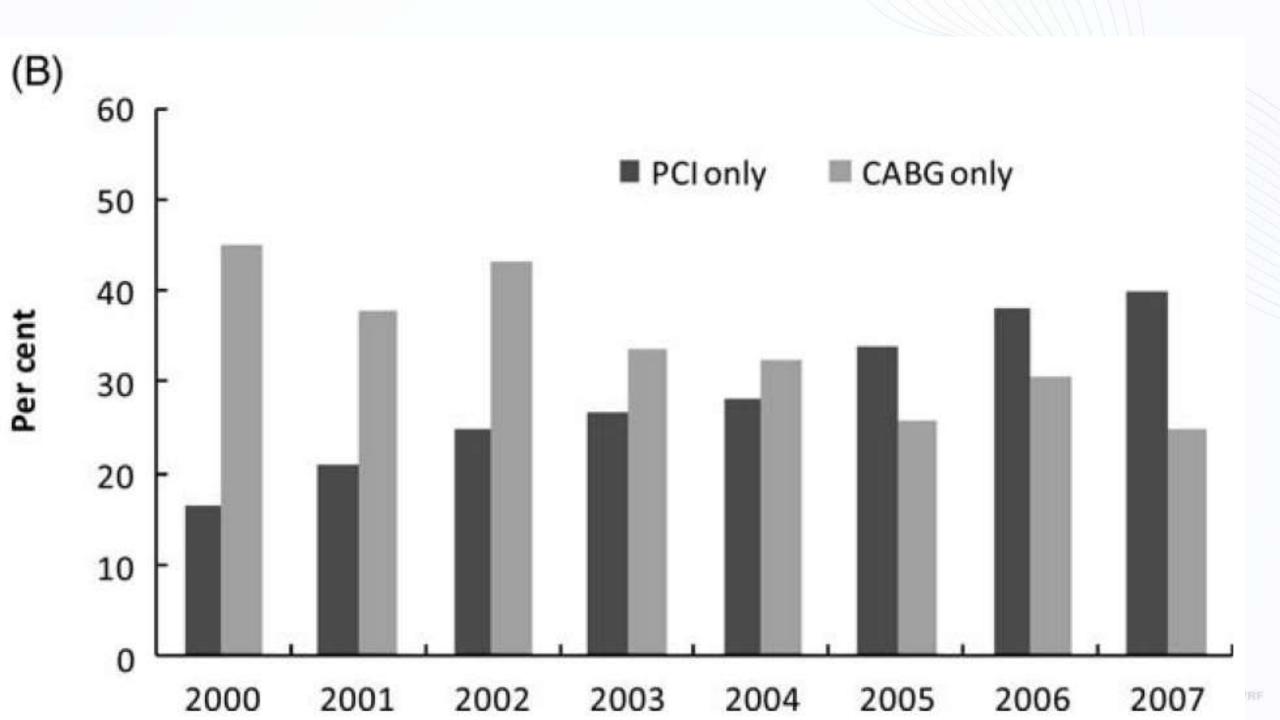
PROGNOSIS

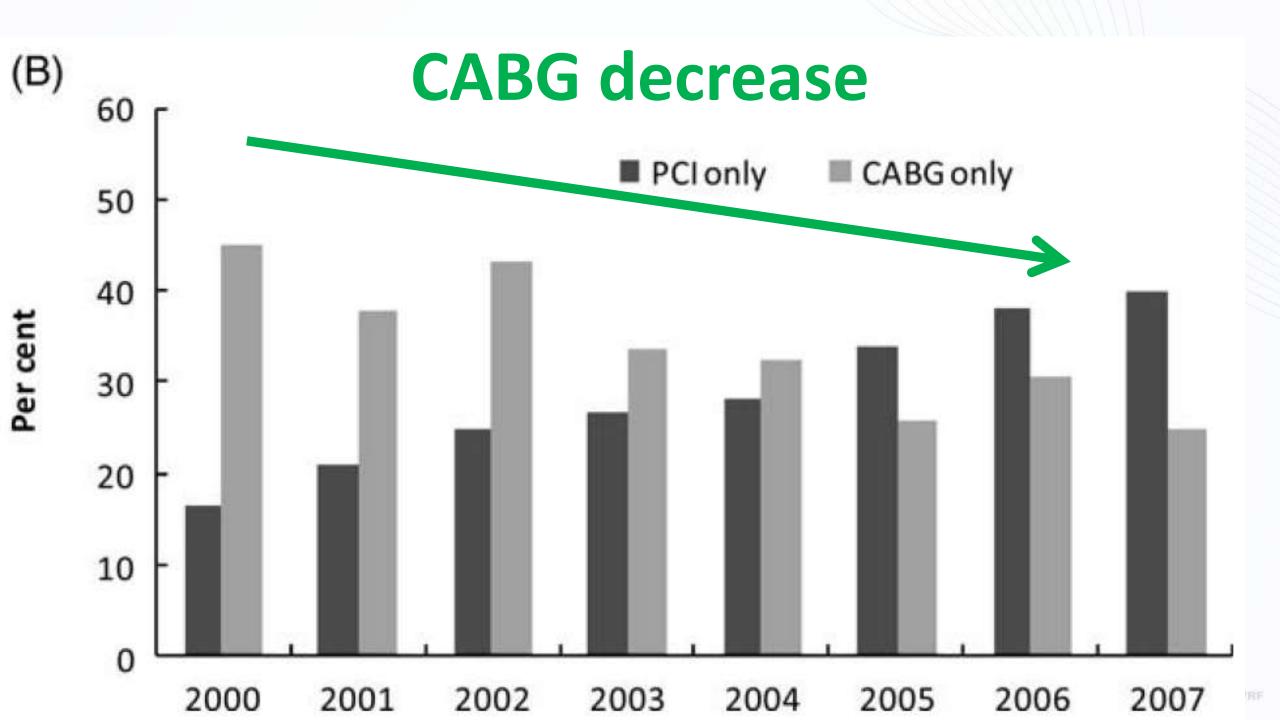
Higher mortality risk in unprotected versus protected left main culprit

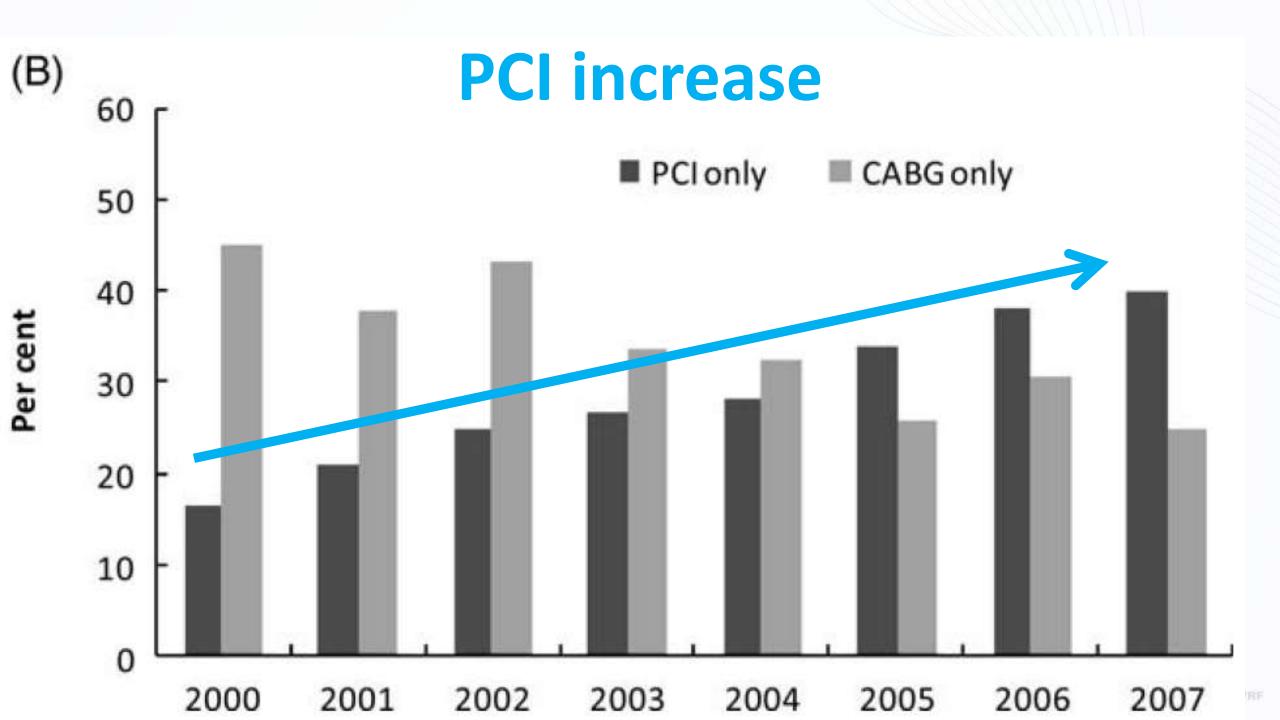
Three-fold increase in mortality risk with cardiogenic shock

Poor prognosis with low pre-PCI TIMI flow grade


Unprotected left main revascularization in patients with acute coronary syndromes


Gilles Montalescot¹*, David Brieger², Kim A. Eagle³, Frederick A. Anderson Jr⁴, Gordon FitzGerald⁴, Michael S. Lee⁵, Ph. Gabriel Steg⁶, Álvaro Avezum⁷, Shaun G. Goodman⁸, and Joel M. Gore for the GRACE Investigators[†]


¹Institut de Cardiologie, Bureau 2-236, Centre Hospitalier Universitaire Pitié-Salpêtrière, 47 Blvd de l'Hôpital, 75013 Paris, France; ²Concord Hospital, Sydney, NSW, Australia; ³University of Michigan Cardiovascular Center, Ann Arbor, MI, USA; ⁴Center for Outcomes Research, University of Massachusetts Medical School, Worcester, MA, USA; ⁵UCLA Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA; ⁶Department of Cardiology, INSERM U-698, Université Paris 7 and Assistance Publique - Hôpitaux de Paris, Paris, France; ⁷Dante Pazzanese Institute of Cardiology, São Paulo, Brazil; and ⁸Canadian Heart Research Centre and Terrence Donnelly Heart Centre, Division of Cardiology, St. Michael's Hospital, University of Toronto, ON, Canada



High GRACE risk score in PCI group

Summary of recent LM STEMI trials

Table 1 Summary of left main STEMI trials

	Year	N	Mean age at presentation	Cardiogenic shock	PCI success	In-house mortality	30-day mortality	1-year mortality
Lee et al	2009	23	70.6 ± 12 years	24% (n=5)	100% (n=23)	8% (n=2)	N/A	N/A
Montalescot et al., GRACE registry	2009	627	70 (median age)	3.4% (n=59)	N/A	11% (n=69)	N/A	N/A
Pedrazzini et al., AMIS registry	2011	348	63.5 ± 12.6 years	12.2% (n=42)	N/A	10.9% (n=38)	N/A	N/A
Papalardo et al	2011	48	70 ± 12.5 years	45% (n=22)	92% (n=44)	21% (n=10)	N/A	10.5% (n=5)
Gagnor et al., The STEMI- Placet Registry	2012	38	67.7 ± 11.45 years	73.7% (n=28)	84.2% (n=32)	42% (n=16)	N/A	N/A
Parma et al	2012	58	67.3 ± 11.5 years	51.7% (n=30)	93.1% (n=54)	N/A	39.6% (n=23)	44% (n=25)
Vis et al., meta- analysis	2013	977	N/A	26% (n=252)	N/A	N/A	15% non-CS, 55% CS	N/A
Almudarra et al., BCIS registry	2014	784	$67.3 \pm 13.7 \text{ years}$	40% (n=314)	70.9% (n=510)	24.6% (n=193)	28.3% (n=222)	37.6% (n=295)
Yap et al., The Asia-Pacific Left Main ST- Elevation Reg- istry (ASTER)	2017	67	64.2 ± 12.8 years	61% (n=41)	76% (n=51)	47.8% (n=32)	N/A	N/A
Liu et al	2018	372	63.4 ± 11.5 years	21.2% (n=79)	92.8% (n=343)	5.1% (n=19)	6.2% (n=23)	8.1% (n=30)
Zoghbi et al., CathPCI Reg- istry	2018	434	62.9 ± 14.6 years	66.4% (n=288)	71.2% (n=309)	58% (n=252)	N/A	N/A

 Table 1 Summary of left main STEMI trials

	Year	N	Mean age at presentation	Cardiogenic shock	PCI success	In-house mortality	30-day mortality	1-year mortalit y
Lee et al	2009	23	$70.6 \pm 12 \text{ years}$	24% (n=5)	100% (n=23)	8% (n=2)	N/A	N/A
Montalescot et al., GRACE registry	2009	627	70 (median age)	3.4% (n=59)	N/A	11% (n=69)	N/A	N/A
Pedrazzini et al., AMIS registry	2011	348	63.5 ± 12.6 years	12.2% (n=42)	N/A	10.9% (n=38)	N/A	N/A
Papalardo et al	2011	48	$70 \pm 12.5 \text{ years}$	45% (n=22)	92% (n=44)	2(0,n-0)	74	10.5% (n=5)
Gagnor et al., The STEMI- Placet Registry	2012	38	67.7 ± 11.45 year	73.7% (n=28)	8-63 (C ₂)	² 63-7	N/A	N) A
Parma et al	2012	58	67.3 ± 11.5 years	51.7% (n=30)	93.1% (n=54)	N/A	39.6% (n=23)	44% (n=25)
Vis et al., meta- analysis	2013	977	N/A	26% (n=252)	N/A	N/A	15% non-CS, 55% CS	N/A
Almudarra et al., BCIS registry	2014	784	$67.3 \pm 13.7 \text{ years}$	40% (n=314)	70.9% (n=510)	24.6% (n=193)	28.3% (n=222)	37.6% (<i>n</i> = 295)
Yap et al., The Asia-Pacific Left Main ST- Elevation Reg- istry (ASTER)	2017	67	64.2 ± 12.8 years	61% (n=41)	76% (n=51)	47.8% (n=32)	N/A	N/A
Liu et al	2018	372	63.4 ± 11.5 years	21.2% (n=79)	92.8% (n=343)	5.1% (n=19)	6.2% (n=23)	8.1% (n=30)
Zoghbi et al., CathPCI Reg- istry	2018	434	62.9 ± 14.6 years	66.4% (n=288)	71.2% (n=309)	58% (n=252)	N/A	N/A

Table 1 Summary of left main STEMI trials

:: ::	Year	N	Mean age at presentation	Cardiogenic shock	PCI success	In-house mortality	30-day mortality	1-year mortality
Lee et al	2009	23	70.6 ± 12 years	24% (n=5)	100% (n=23)	8% (n=2)	N/A	N/A
Montalescot et al., GRACE registry	2009	627	70 (median age)	3.4% (n=59)	N/A	11% (n = 69)	N/A	N/A
Pedrazzini et al., AMIS registry	2011	348	63.5 ± 12.6 years	12.2% (n=42)	N/A	10.9% (n=38)	N/A	N/A
Papalardo et al	2011	48	$70 \pm 12.5 \text{ years}$	45% (n=22)	92% (n=44)	01% (n=10)	abla re	10.5% (n=5)
Gagnor et al., The STEMI- Placet Registry	2012	38	67.7 ± 11.45 year	73.7% (n=28)		& vari		
Parma et al	2012	58	67.3 ± 11.5 years	51.7% (n=30)	93.1%	diogei	4.6 (n 5 3)	U4G(A25)
Vis et al., meta- analysis	2013	977	N/A	26% (n=252)	N/A	N/A	15% non-CS, 55% CS	N/A
Almudarra et al., BCIS registry	2014	784	67.3 ± 13.7 years	40% (n=314)	70.9% (n=510)	24.6% (n=193)	28.3% (n=222)	37.6% (n=295)
Yap et al., The Asia-Pacific Left Main ST- Elevation Reg- istry (ASTER)	2017	67	64.2 ± 12.8 years	61% (n=41)	76% (n=51)	47.8% (n=32)	N/A	N/A
Liu et al	2018	372	63.4 ± 11.5 years	21.2% (n=79)	92.8% (n=343)	5.1% (n=19)	6.2% (n=23)	8.1% (n=30)
Zoghbi et al., CathPCI Reg- istry	2018	434	62.9 ± 14.6 years	66.4% (n = 288)	71.2% (n=309)	58% (n=252)	N/A	N/A

Table 1 Summary of left main STEMI trials

	Year	N	Mean age at presentation	Cardiogenic shock	PCI success	In-house mortality	30-day mortality	1-year mortality
Lee et al	2009	23	70.6 ± 12 years	24% (n=5)	100% (n=23)	8% (n=2)	N/A	N/A
Montalescot et al., GRACE registry	2009	627	70 (median age)	3.4% (n=59)	N/A	11% (n=69)	N/A	N/A
Pedrazzini et al., AMIS registry	2011	348	$63.5 \pm 12.6 \text{ years}$	12.2% (n=42)	N/A	10.9% (n=38)	N/A	N/A
Papalardo et al	2011	48	70 ± 12.5 years	45% (n=22)	92% (n=44)	21% (n=10)	N/A	10.5% (n=5)
Gagnor et al.	2012 TI	38 1 6	ely lac	73.7% (n=28)	84.2% (n=32)	42% (n=16) Prm		N/A
Dogmo et el	2012	50	$67.3 \pm 11.5 \text{ years}$	51.7% (n=30)	02 10/ 8 54)	NI/A	39.6% (n=23)	440/ (25)
Parma et al	2012				93.1% (n=54)	IN/A	555 355 35 NS 1555 Z	44% (n=25)
Vis et al., meta- analysis	2013	977	N/A	26% (n=252)	N/A	N/A	15% non-CS, 55% CS	N/A
Almudarra et al., BCIS registry	2014	784	$67.3 \pm 13.7 \text{ years}$	40% (n=314)	70.9% (n=510)	24.6% (n=193)	28.3% (n=222)	37.6% (n=295)
Yap et al., The Asia-Pacific Left Main ST- Elevation Reg- istry (ASTER)	2017	67	64.2 ± 12.8 years	61% (n=41)	76% (n=51)	47.8% (n=32)	N/A	N/A
Liu et al	2018	372	$63.4 \pm 11.5 \text{ years}$	21.2% (n=79)	92.8% (n=343)	5.1% (n=19)	6.2% (n=23)	8.1% (n=30)
Zoghbi et al., CathPCI Reg- istry	2018	434	$62.9 \pm 14.6 \text{ years}$	66.4% (n=288)	71.2% (n=309)	58% (n=252)	N/A	N/A

Treatment Options

CABG or PCI?

• Pivotal LM trials (SYNTAX, EXCEL, and NOBLE) excluded AMI pts

• Currently no prospective randomized trials comparing surgical CABG and PCI revascularization options for patients with LM culprit STEMI.

Current AHA/ACC STEMI guideline

- Rapid revascularization for all patients with STEMI.
- If presenting to a non-PCI capable hospital with first medical contact to balloon time>120 min may be treated with fibrinolytics if there is ST elevation in aVR and reciprocal precordial ST segment depressions.
- If patients presenting to a PCI capable hospital
- → Primary PCI, a Class IIa recommendation

New Predictors

Research Article

New Predictors of Early and Late Outcomes after Primary Percutaneous Coronary Intervention in Patients with ST-Segment Elevation Myocardial Infarction and Unprotected Left Main Coronary Artery Culprit Lesion

Cãlin Homorodean , ^{1,2} Adrian Corneliu Iancu, ^{1,3} Daniel Leucuța, ¹ Şerban Bãlãnescu, ⁴ Ioana Mihaela Dregoesc , ^{1,3} Mihai Spînu, ¹ Mihai Ober, ² Dan Tãtaru, ^{1,2} Maria Olinic, ^{1,2} Dan Bindea, ^{1,3} and Dan Olinic ^{1,2}

Angiographic characteristics	N = 81
Lesion Location	
Proximal LM	31 (38.3)
Mid LM	8 (9.9)
Distal LM	42 (51.8)
Pre-procedural TIMI Flow Grade	
TIMI 0	11 (13.6)
TIMI 1	8 (9.9)
TIMI 2	18 (22.2)
TIMI 3	44 (54.3)
Rentrop collaterals to LCA	10
Occluded RCA	16 (19.7)
Rentrop collaterals to RCA	11 (13.5)
Extent of coronary artery disease	
LM only	25 (30.8)
LM + Ivessel	19 (23.5)
LM + 2 vessels	20 (24.7)
LM + 3 vessels	17 (21)
LM stenosis	
70-89%	20 (24.7)
90-99%	49 (60.5)
100%	12 (14.8)

Angiographic characteristics	N = 81
Lesion Location	
Proximal LM	31 (38.3)
Mid LM	8 (9.9)
Distal LM	42 (51.8)
Pre-procedural TIMI Flow Grade	
TIMI 0	11 (13.6)
TIMI 1	8 (9.9)
TIMI 2	18 (22.2)
TIMI 3	44 (54.3)
Rentrop collaterals to LCA	10
Occluded RCA	16 (19.7)
Rentrop collaterals to RCA	11 (13.5)
Extent of coronary artery disease	
LM only	25 (30.8)
LM + Ivessel	19 (23.5)
LM + 2 vessels	20 (24.7)
LM + 3 vessels	17 (21)
LM stenosis	
70-89%	20 (24.7)
90-99%	49 (60.5)
100%	12 (14.8)

Angiographic characteristics	N = 81
Lesion Location	
Proximal LM	31 (38.3)
Mid LM	8 (9.9)
Distal LM	42 (51.8)
Pre-procedural TIMI Flow Grade	
TIMI 0	11 (13.6)
TIMI 1	8 (9.9)
TIMI 2	18 (22.2)
TIMI 3	44 (54.3)
Rentrop collaterals to LCA	10
Occluded RCA	16 (19.7)
Rentrop collaterals to RCA	11 (13.5)
Extent of coronary artery disease	
LM only	25 (30.8)
LM + 1vessel	19 (23.5)
LM + 2 vessels	20 (24.7)
LM + 3 vessels	17 (21)
LM stenosis	
70-89%	20 (24.7)
90-99%	49 (60.5)
100%	12 (14.8)

Angiographic characteristics	N = 81
Lesion Location	
Proximal LM	31 (38.3)
Mid LM	8 (9.9)
Distal LM	42 (51.8)
Pre-procedural TIMI Flow Grade	
TIMI 0	11 (13.6)
TIMI 1	8 (9.9)
TIMI 2	18 (22.2)
TIMI 3	44 (54.3)
Rentrop collaterals to LCA	10
Occluded RCA	16 (19.7)
Rentrop collaterals to RCA	11 (13.5)
Extent of coronary artery disease	
LM only	25 (30.8)
LM + Ivessel	19 (23.5)
LM + 2 vessels	20 (24.7)
LM + 3 vessels	17 (21)
LM stenosis	
70-89%	20 (24.7)
90-99%	49 (60.5)
100%	12 (14.8)

Angiographic characteristics	N = 81
Lesion Location	
Proximal LM	31 (38.3)
Mid LM	8 (9.9)
Distal LM	42 (51.8)
Pre-procedural TIMI Flow Grade	
TIMI 0	11 (13.6)
TIMI 1	8 (9.9)
TIMI 2	18 (22.2)
TIMI 3	44 (54.3)
Rentrop collaterals to LCA	10
Occluded RCA	16 (19.7)
Rentrop collaterals to RCA	11 (13.5)
Extent of coronary artery disease	
LM only	25 (30.8)
LM + lvessel	19 (23.5)
LM + 2 vessels	20 (24.7)
LM + 3 vessels	17 (21)
LM stenosis	
70-89%	20 (24.7)
90-99%	49 (60.5)
100%	12 (14.8)

EuroScore II	12.2 (3.88-28.6)		
SYNTAX Score I	28 (18-34)		
Residual SYNTAX Score	2 (0-11)		
SYNTAX Revascularization Index	89.4 (64.3-100)		
SYNTAX Score II PCI	43.1±15.7		
Procedural characteristics			
Bifurcation technique	56 (69.1)		
Kissing stents	3 (3.7)		
Provisional	49 (60.5)		
V stenting	1 (1.2)		
T stenting	2 (2.5)		
Mini crush	1 (1.2)		
BMS	48 (59.3)		
DES	33 (40.7)		
Post-PCI TIMI Flow			
0	0		
1	5 (6.2)		
2	5 (6.2)		
3	71(87.6)		
Technical success	76 (92.8)		

EuroScore II	12.2 (3.88-28.6)		
SYNTAX Score I	28 (18-34)		
Residual SYNTAX Score	2 (0-11)		
SYNTAX Revascularization Index	89.4 (64.3-100)		
SYNTAX Score II PCI	43.1±15.7		
Procedural characteristics			
Bifurcation technique	56 (69.1)		
Kissing stents	3 (3.7)		
Provisional	49 (60.5)		
V stenting	1 (1.2)		
T stenting	2 (2.5)		
Mini crush	1(1.2)		
BMS	48 (59.3)		
DES	33 (40.7)		
Post-PCI TIMI Flow			
0	0		
1	5 (6.2)		
2	5 (6.2)		
3	71(87.6)		
Technical success	76 (92.8)		

EuroScore II	12.2 (3.88-28.6)		
SYNTAX Score I	28 (18-34)		
Residual SYNTAX Score	2 (0-11)		
SYNTAX Revascularization Index	89.4 (64.3-100)		
SYNTAX Score II PCI	43.1±15.7		
Procedural characteristics			
Bifurcation technique	56 (69.1)		
Kissing stents	3 (3.7)		
Provisional	49 (60.5)		
V stenting	1 (1.2)		
T stenting	2 (2.5)		
Mini crush	1 (1.2)		
BMS	48 (59.3)		
DES	33 (40.7)		
Post-PCI TIMI Flow			
0	0		
1	5 (6.2)		
2	5 (6.2)		
3	71(87.6)		
Technical success	76 (92.8)		

28th TCTAP

TABLE 4: Multivariate logistic regression for the prediction of 30 days and 1-year all-cause mortality (adjusted for cardiogenic shock and TIMI flow). BMS = bare-metal stent, DES = drug-eluting stent, LM = Left Main, PCI = percutaneous coronary intervention, and TIMI = Thrombolysis in Myocardial Infarction.

	30 days			One year		
	OR	95% CI	p	OR	95% CI	р
LM TIMI flow 0/1	3.73	1.107-13.7	0.038	2.89	0.91-9.9	0.077
Cardiogenic shock before PCI	9.83	3.28-34.65	< 0.001	5.13	1.96-14.26	0.001
Age (years)	1.05	1.002-1.101	0.053	1.06	1.02-1.12	0.008
Total ischemic time (min)	1	0.99-1.003	0.966	1	0.99-1.002	0.98
Diabetes	1.94	0.61-6.36	0.261	1.21	0.42-3.49	0.71
Cardiac arrest before PCI	1.78	0.47-6.53	0.386	1.47	0.39-5.29	0.55
Left ventricular ejection fraction (<40%)	1.54	0.37-6.89	0.551	1.19	0.35-4.06	0.76
EuroSCORE II	1.001	0.97-1.035	0.941	1.02	0.98-1.05	0.30
Number of diseased vessels	1.05	0.62-1.78	0.849	1.405	0.88-2.30	0.16
SYNTAX Score	1.02	0.97-1.078	0.414	1.029	0.98-1.08	0.252
SYNTAX Revascularization Index	0.97	0.95-1	0.057	0.979	0.95-0.99	0.046
PCI SYNTAX II Score	1.03	0.99-1.07	0.163	1.059	1.02-1.11	0.006
Residual SYNTAX Score	1.05	0.99-1.11	0.107	1.053	1-1.12	0.069
DES vs BMS	0.74	0.23-2.38	0.617	0.46	0.15-1.3	0.148

Conclusion

- 1. Baseline condition: age, LM TIMI flow 1/0, cardiogenic shock
- 2. SYNTAX revascularization index (HR: 0.9; p=0.01)
- 3. Residual SYNTAX score (HR: 1.03; p=0.04)
- → major predictors of long-term mortality among pts undergoing PCI for treatment of unprotected LMC STEMI.

Conclusion

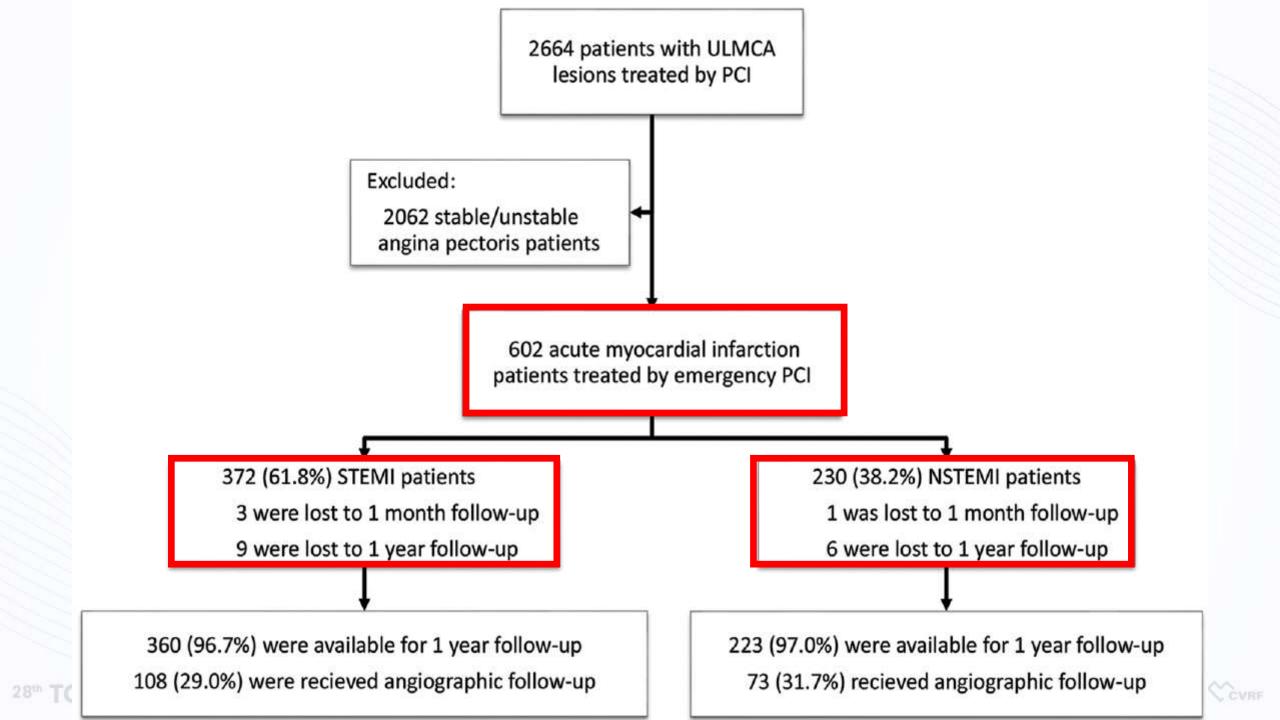
- 1. Baseline condition: age, LM TIMI flow 1/0, cardiogenic shock
- 2. SYNTAX revascularization index (HR: 0.9; p=0.01)
- 3. Residual SYNTAX score (HR: 1.03; p=0.04)
- → major predictors of long-term mortality among pts undergoing PCI for treatment of unprotected LMC STEMI.

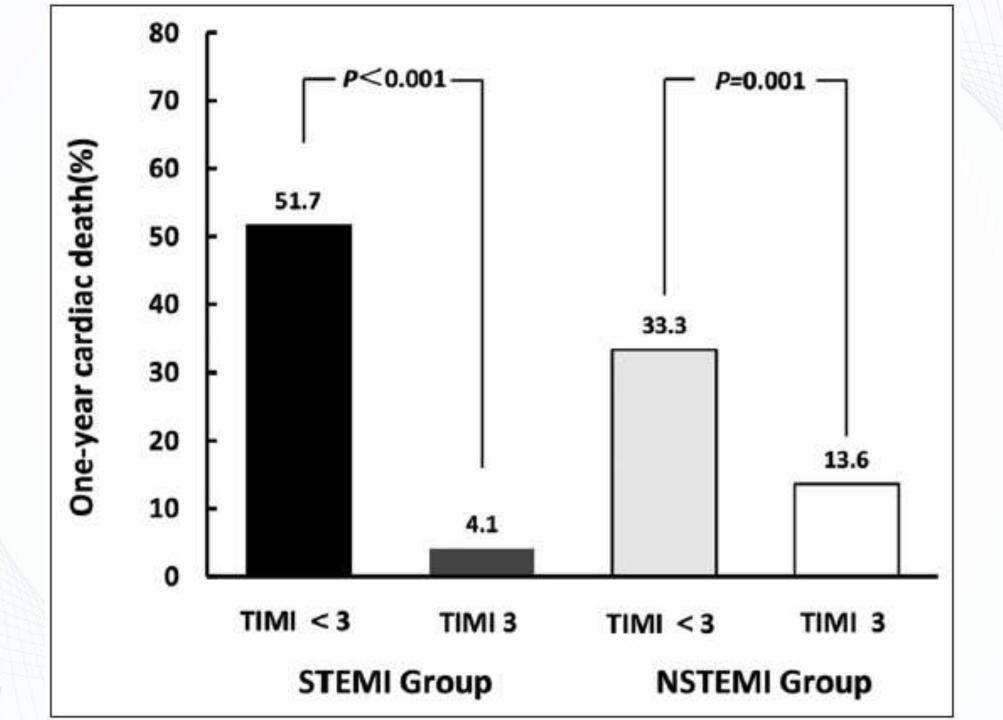
Conclusion

- 1. Baseline condition: age, LM TIMI flow 1/0, cardiogenic shock
- 2. SYNTAX revascularization index (HR: 0.9; p=0.01)
- 3. Residual SYNTAX score (HR: 1.03; p=0.04)
- → major predictors of long-term mortality among pts undergoing PCI for treatment of unprotected LMC STEMI.

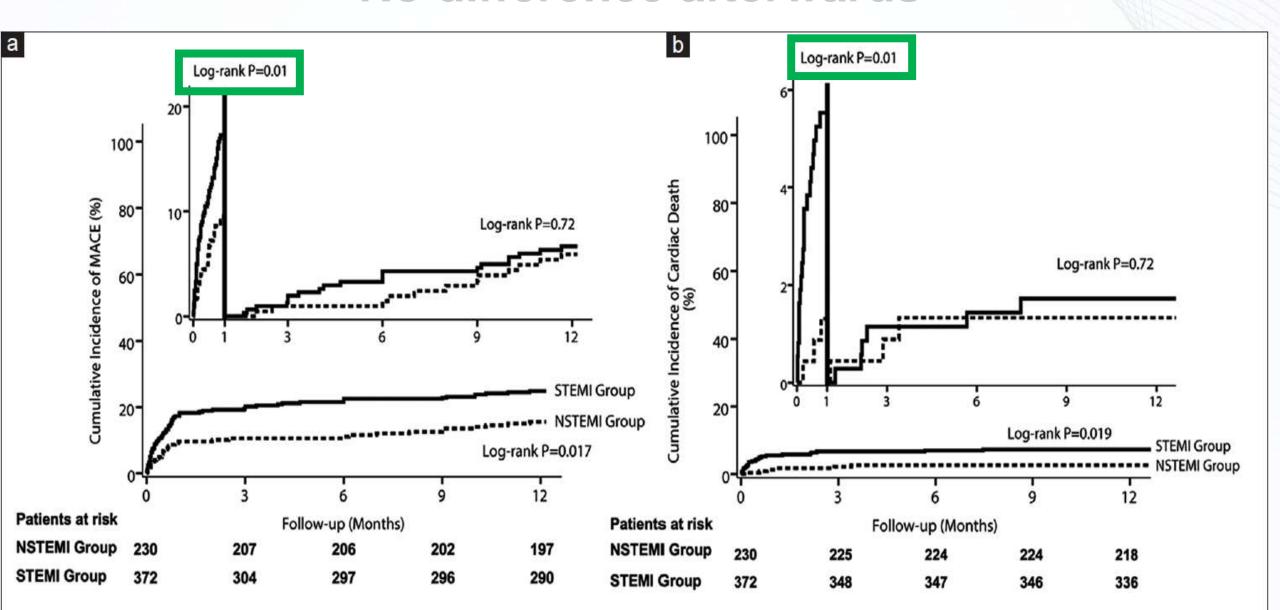
Asian LM STEMI data

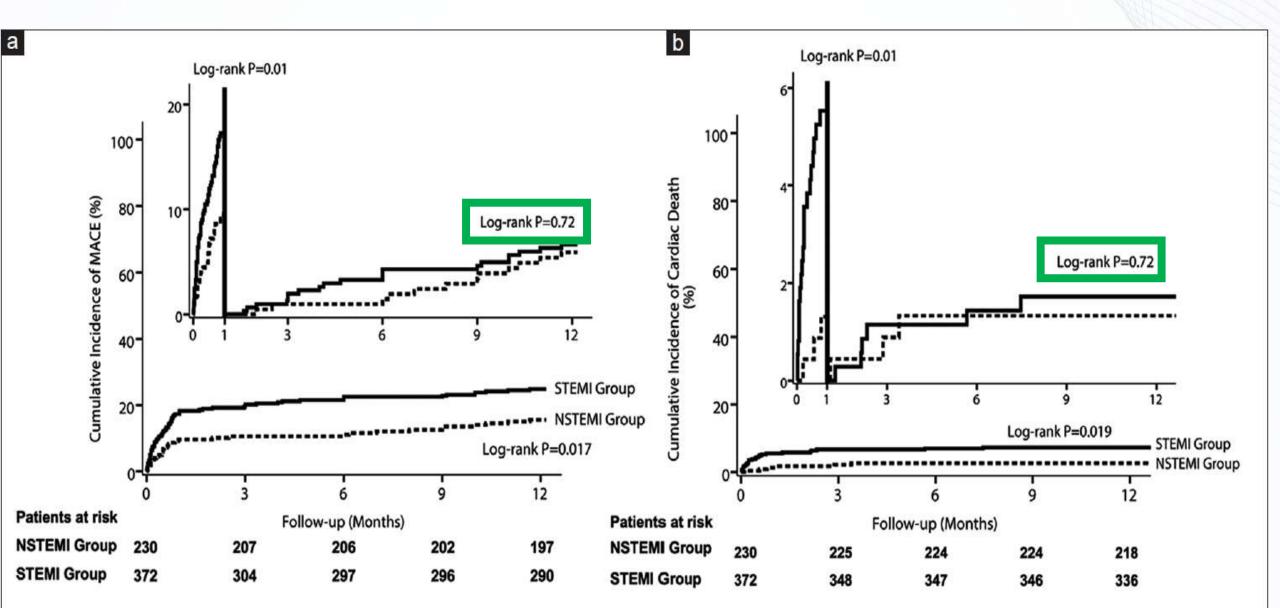
Original Article


One-year Outcomes in Patients with ST-segment Elevation Myocardial Infarction Caused by Unprotected Left Main Coronary Artery Occlusion Treated by Primary Percutaneous Coronary Intervention


Hai-Wei Liu¹, Ya-Ling Han¹, Quan-Min Jin¹, Xiao-Zeng Wang¹, Ying-Yan Ma¹, Geng Wang¹, Bin Wang¹, Kai Xu¹, Yi Li¹, Shao-Liang Chen²

¹Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, China


²Department of Cardiology, Nanjing First Hospital, Nanjing, Jiangsu 210006, China



MACE & CV death is critical in the first month No difference afterwards

MACE & CV death is critical in the first month No difference afterwards

No difference in MI & TVR

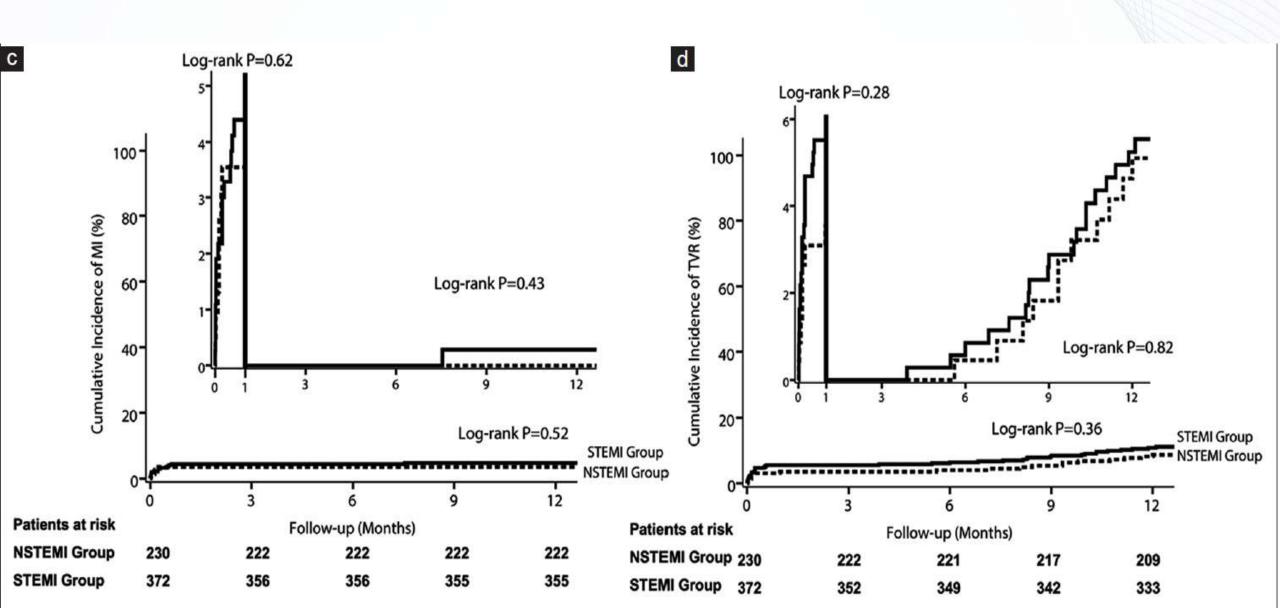
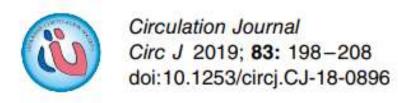


Table 4: Multivariable analysis showing independent predictors of the 1-year MACE

CTEMIL /--

0701

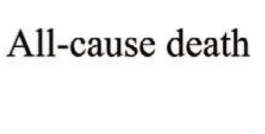

Variables	SIEIVII (n =	SIEIVII $(n = 3/2)$	
	HR (95% CI)	P	•
Renal insufficiency	1.24 (0.43-3.54)	0.691	
Previous MI	1.73 (0.68-4.40)	0.250	
LVEF <35%	3.06 (1.95-4.82)	< 0.001	
Killip class ≥III	2.76 (1.39-5.49)	0.004	
LM distal bifurcation	0.82 (0.45-1.50)	0.516	
Two-stent for distal LM lesions	0.97 (0.55-1.69)	0.914	
Post-PCI TIMI flow grade >2	0.02 (0.01-0.04)	0.018	
IABP support	1.79 (1.07-3.01)	0.027	

Variables

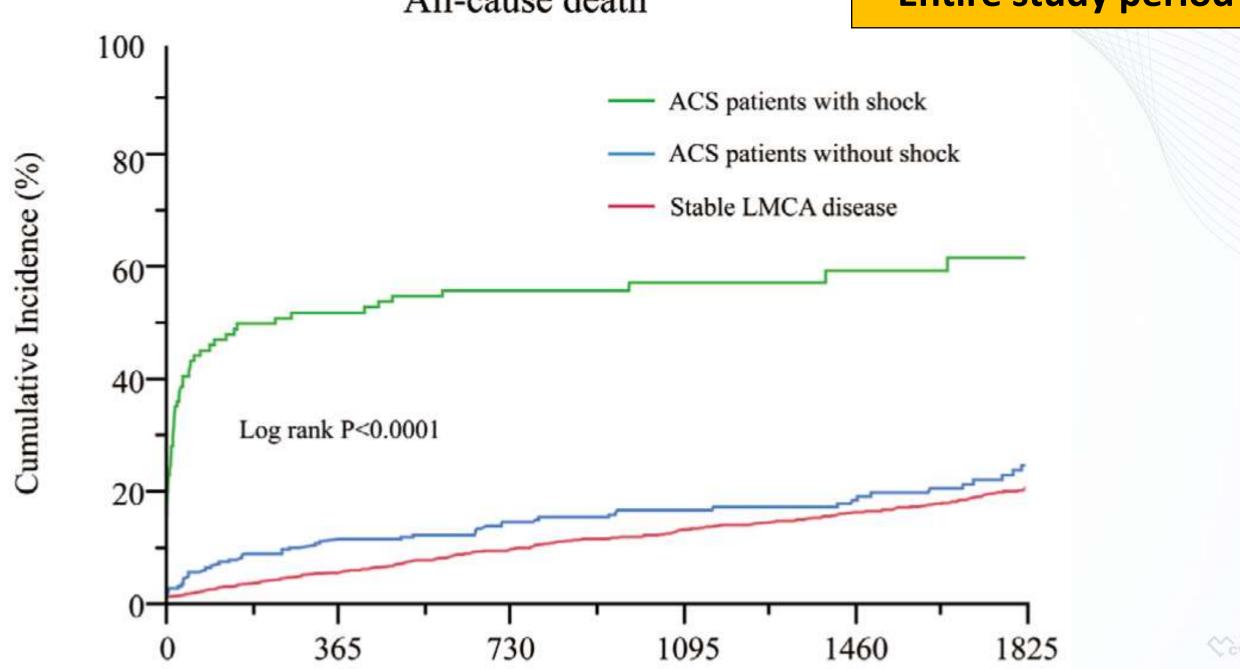
Conclusion

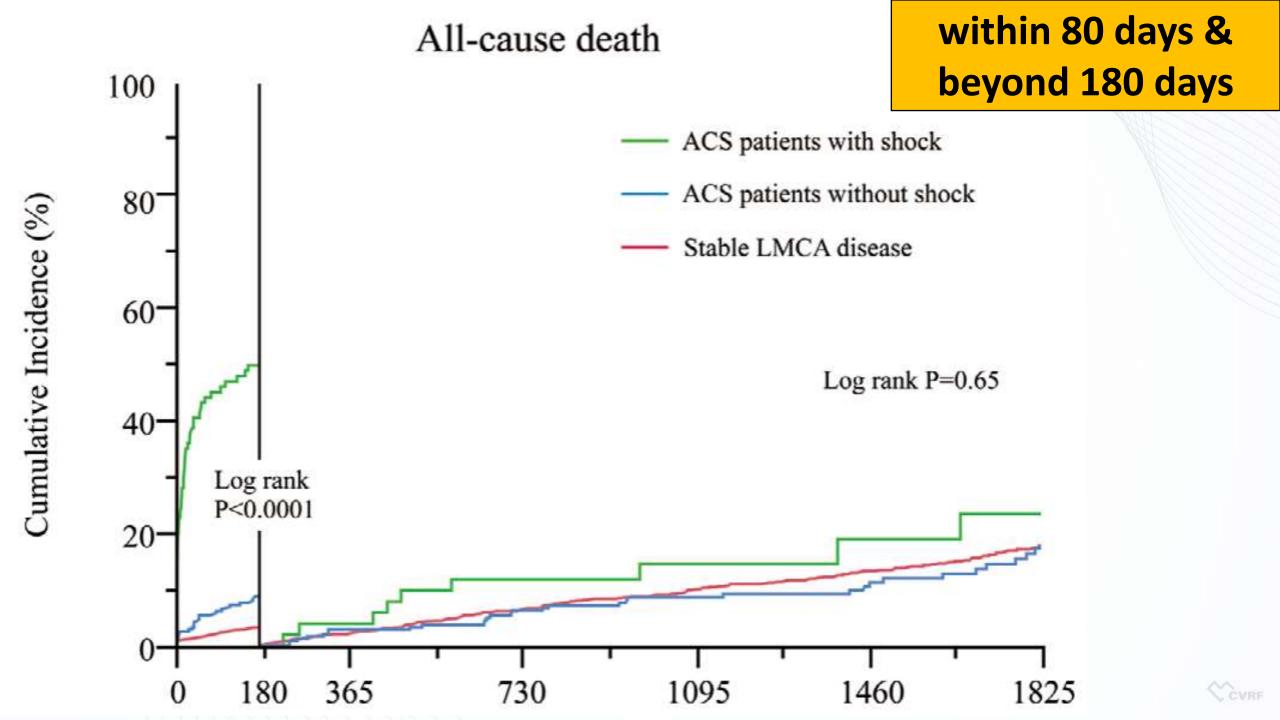
• 1.Unprotected LM STEMI has a higher MACE and CV death in the first month, then the risk is similar with NSTEMI

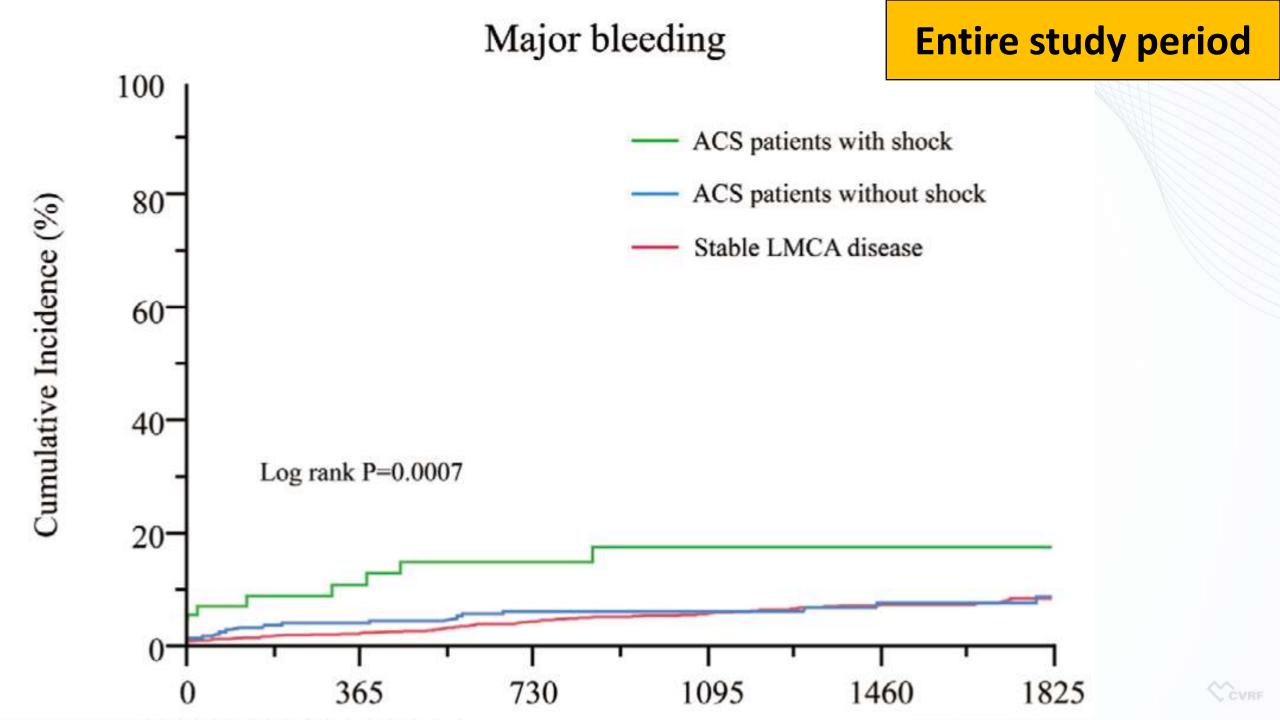
• 2. LVEF, Killip class & Post-PCI TIMI grade are significant predictors

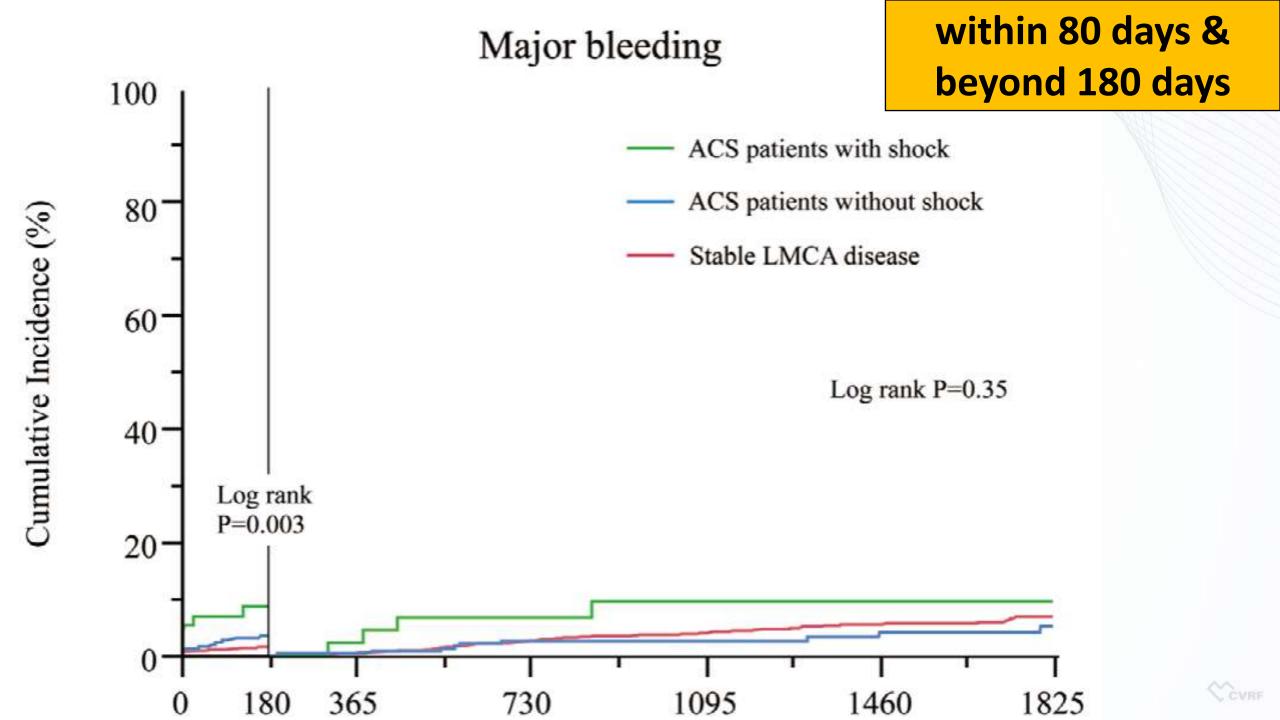

ORIGINAL ARTICLE Ischemic Heart Disease

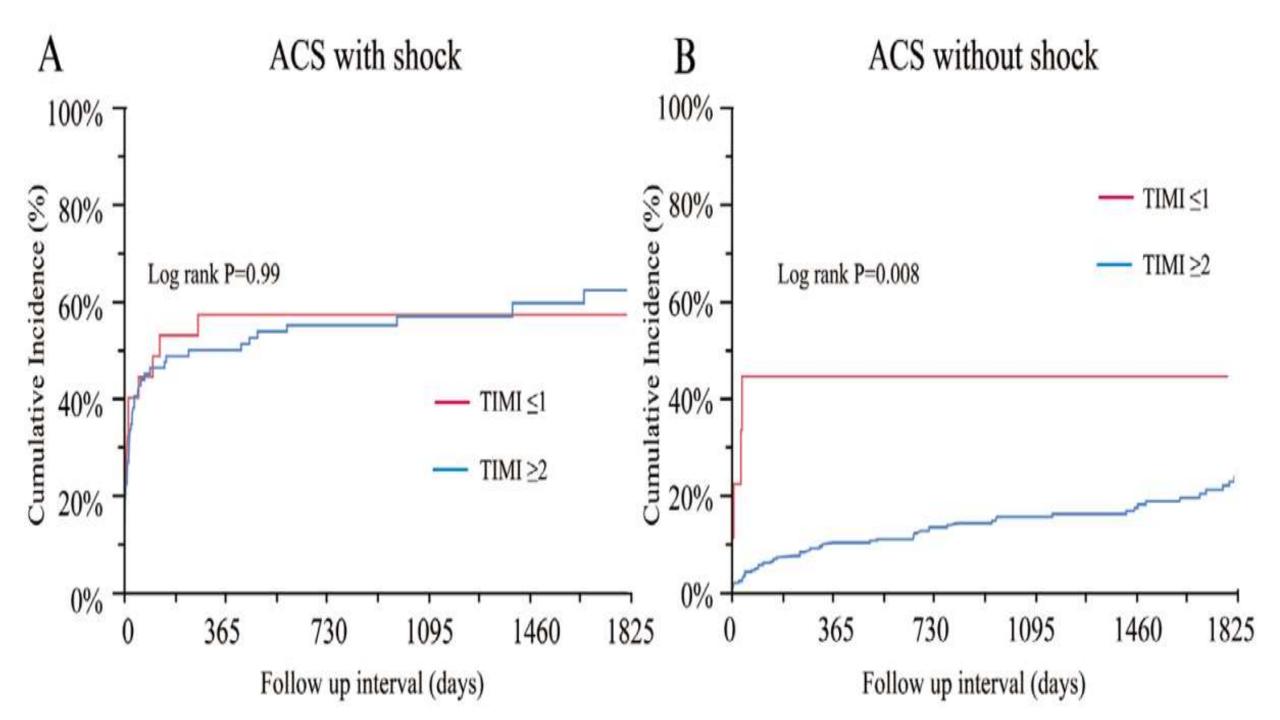
Acute Coronary Syndrome With Unprotected Left Main Coronary Artery Culprit


— An Observation From the AOI-LMCA Registry —


Hirooki Higami, MD; Mamoru Toyofuku, MD; Takeshi Morimoto, MD; Masanobu Ohya, MD; Yasushi Fuku, MD; Kyohei Yamaji, MD; Hiromi Muranishi, MD; Yuhei Yamaji, MD; Koji Nishida, MD; Daisuke Furukawa, MD; Tomohisa Tada, MD; Euihong Ko, MD; Kenji Ando, MD; Hiroki Sakamoto, MD; Takashi Tamura, MD; Kazuya Kawai, MD; Kazushige Kadota, MD; Takeshi Kimura, MD on behalf of the AOI-LMCA Stenting Registry Investigators


CVRF




Entire study period

LMCA Disease **Culprit Lesion** Non-culprit Lesion Cardiogenic shock Stable status Stable status Cardiogenic shock Hemodynamic instability Calcified lesion Unfavorable anatomy for PCI Elderly with favorable anatomy Initial TIMI 0-1 flow Multivessel disease and Multivessel disease and Isolated osteal or shaft lesion High perioperative risk high SYNTAX score high SYNTAX score •LAD or CX culprit lesion with Octogenerians •LV dysfunction and diabetes •LV dysfunction and diabetes advanced LMCA stenosis Favorable anatomy Valvular disease or Moderate to severe valvular •RCA culprit lesion with Isolated LMCA lesion mechanical complication disease favorable features for PCI* PCI **Urgent Surgery**

PCI

Elective Surgery

^{*}Elective PCI for RCA culprit lesion

LMCA Disease **Culprit Lesion** Non-culprit Lesion 1. Cardiogenic shock? Cardiogenic shock Stable status Hemodynamic instability 2. Initial LM TIMI flow? Calcified lesion Initial TIMI 0-1 flow Multivessel disease and High perioperative risk high SYNTAX score Octogenerians 3. Will CABG be in time? •LV dysfunction and diabetes Favorable anatomy Valvular disease or Isolated LMCA lesion mechanical complication 4. OP risk, LVEF

Elective Surgery

Urgent Surgery

PCI

^{*}Elective PCI for RCA culprit lesion

Take Home Message

- 1.Unprotected LM STEMI has a higher MACE and CV death in the first month, then the risk is similar with NSTEMI afterwards
- 2. PCI is more favorable with those pts with cardiogenic shock, initial LM TIMI flow 0-1, high OP risk.
- 3. Take CABG time into concern
- 4. Initial age, LVEF & Killip class & Post-PCI TIMI grade are significant predictors
- 5. SYNTAX revascularization index & Residual SYNTAX score major predictors of long-term mortality among pts undergoing PCI for treatment of unprotected LMC STEMI.

- 1.Unprotected LM STEMI has a higher MACE and CV death in the first month, then the risk is similar with NSTEMI afterwards
- 2. PCI is more favorable with those pts with cardiogenic shock, initial LM TIMI flow 0-1, high OP risk.
- 3. Take CABG time into concern
- 4. Initial age, LVEF & Killip class & Post-PCI TIMI grade are significant predictors
- 5. SYNTAX revascularization index & Residual SYNTAX score major predictors of long-term mortality among pts undergoing PCI for treatment of unprotected LMC STEMI.

- 1.Unprotected LM STEMI has a higher MACE and CV death in the first month, then the risk is similar with NSTEMI afterwards
- 2. PCI is more favorable with those pts with cardiogenic shock, initial LM TIMI flow 0-1, high OP risk.
- 3. Take CABG time into concern
- 4. Initial age, LVEF & Killip class & Post-PCI TIMI grade are significant predictors
- 5. SYNTAX revascularization index & Residual SYNTAX score major predictors of long-term mortality among pts undergoing PCI for treatment of unprotected LMC STEMI.

- 1.Unprotected LM STEMI has a higher MACE and CV death in the first month, then the risk is similar with NSTEMI afterwards
- 2. PCI is more favorable with those pts with cardiogenic shock, initial LM TIMI flow 0-1, high OP risk.
- 3. Take CABG time into concern
- 4. Initial age, LVEF & Killip class & Post-PCI TIMI grade are significant predictors
- 5. SYNTAX revascularization index & Residual SYNTAX score major predictors of long-term mortality among pts undergoing PCI for treatment of unprotected LMC STEMI.

- 1.Unprotected LM STEMI has a higher MACE and CV death in the first month, then the risk is similar with NSTEMI afterwards
- 2. PCI is more favorable with those pts with cardiogenic shock, initial LM TIMI flow 0-1, high OP risk.
- 3. Take CABG time into concern
- 4. Initial age, LVEF & Killip class & Post-PCI TIMI grade are significant predictors
- 5. SYNTAX revascularization index & Residual SYNTAX score major predictors of long-term mortality among pts undergoing PCI for treatment of unprotected LMC STEMI.

Conclusion

• Summarize the most important points of your lecture (24pt / Arial)