Luncheon Symposium

Eagle's Eye View: How to Get Patients on a Statin Timely and Keep Them on It

Duk-Woo Park, MD

Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea

Disclosure

 Institutional grant/research funding to CardioVascular Research Foundation (CVRF, Korea) and/or Asan Medical Center from Abbott, Boston Scientific, Medtronics, Daiichi-Sankyo, Edwards Lifescience, HK InnoN, Daewoong Pharm, and ChongKunDang Pharm.

1. Lipid Lowering Guidelines for ACS Patients

2. Early Benefit of High-intensity Statin Therapy in ACS Patient

3. Effect of High-intensity Statin Pretreatment in ACS Patient Undergoing PCI

4. Plaque Regression in Stable ACS Patients

5. Inflammatory Risk and Statin Therapy in ACS Patient Undergoing PCI

Lipid Lowering Guidelines for ACS Patients

AHA/ACC Guideline for the Management of Patients With NSTE ACS

Early Hospital Care

Recommendations	COR	LOE
Cholesterol management		
Initiate or continue high-intensity statin therapy in patients with no contraindications	I	А
Obtain a fasting lipid profile, preferably within 24 h	lla	С
Therapy with stating in patients w	ith NSTE A	CS reduces

Key Evidence PROVE IT-TIMI 22, MIRACL

Therapy with statins in patients with NSTE-ACS reduces the rate of recurrent MI, coronary heart disease mortality, need for myocardial revascularization, and stroke. High-risk patients, such as those with NSTE-ACS, derive more benefit in reducing these events from high-intensity statins, such as atorvastatin which lower low-density lipoprotein cholesterol levels by \geq 50% as in the <u>PROVE IT-TIMI 22</u> (Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction) and <u>MIRACL</u> (Myocardial Ischemia Reduction With Acute Cholesterol Lowering) trials,^{273,274} than from moderate- or low-intensity statins.^{18,272} These findings provide the basis for high-intensity statin therapy after stabilization of patients with NSTE-ACS. In addition, early introduction of this approach can promote improved compliance with this regimen.

ESC/EAS Guidelines for the Management of Dyslipidemias

Recommendations in very high-risk patients with ACS patients

Recommendations	COR	LOE
In all ACS patients without any contraindication or definite history of intolerance, <mark>it is recommended high-dose statin is initiated or continued as early as possible, regardless of initial LDL-C</mark> values	I	А

C Recommendations in very high-risk patients undergoing PCI

Recommendations	COR	LOE
Routine pre-treatment or loading (on a background of chronic therapy) with a high-dose statin should be considered in patients undergoing PCI for an ACS or elective PCI.	lla	В

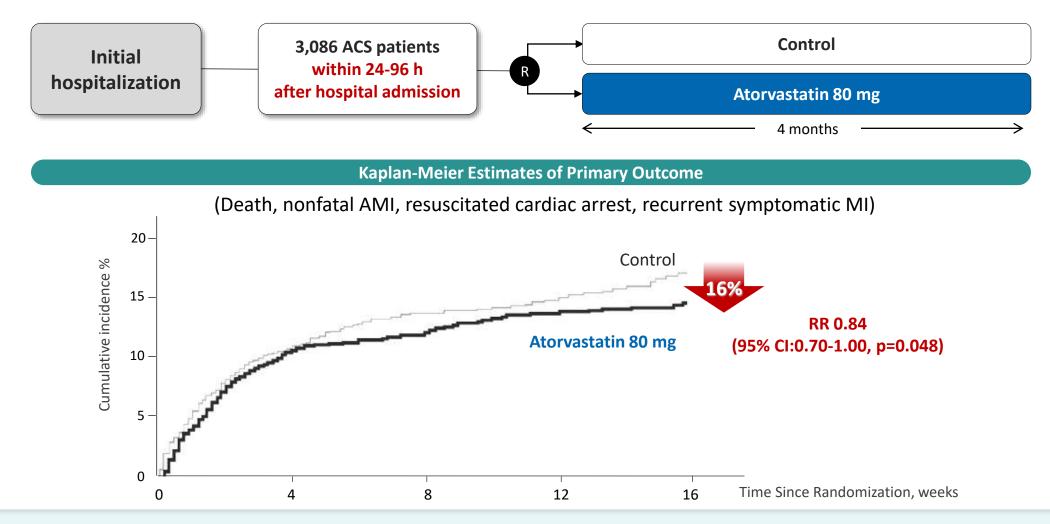
Korean Society of Myocardial Infarction 2020 Expert Consensus Document on Pharmacotherapy for Acute MI

Recommendations for lipid-lowering therapy in acute MI

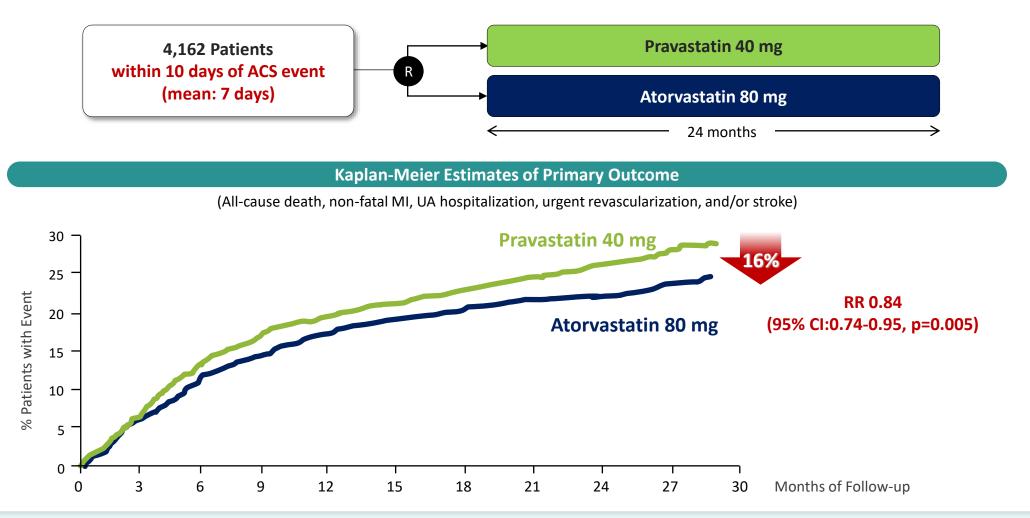
- It is recommended to obtain a lipid profile in all patients with AMI as soon as possible after presentation.
- It is recommended to start high-intensity statin therapy as early as possible after AMI, unless contraindicated, and maintain it during the long term.
- Treatment goals are recommended as an LDL-C reduction of ≥50% from baseline or an LDL-C level of <70 mg/dL in patients with AMI.
- In patients with AMI with LDL-C ≥70 mg/dL despite a maximally tolerated statin dose, combination with ezetimibe is recommended.
- In patients with AMI with LDL-C ≥70 mg/dL despite a maximally tolerated dose of a statin and ezetimibe, a combination with a PCSK9 inhibitor is recommended.

2022 Updated Korean Cholesterol management guideline

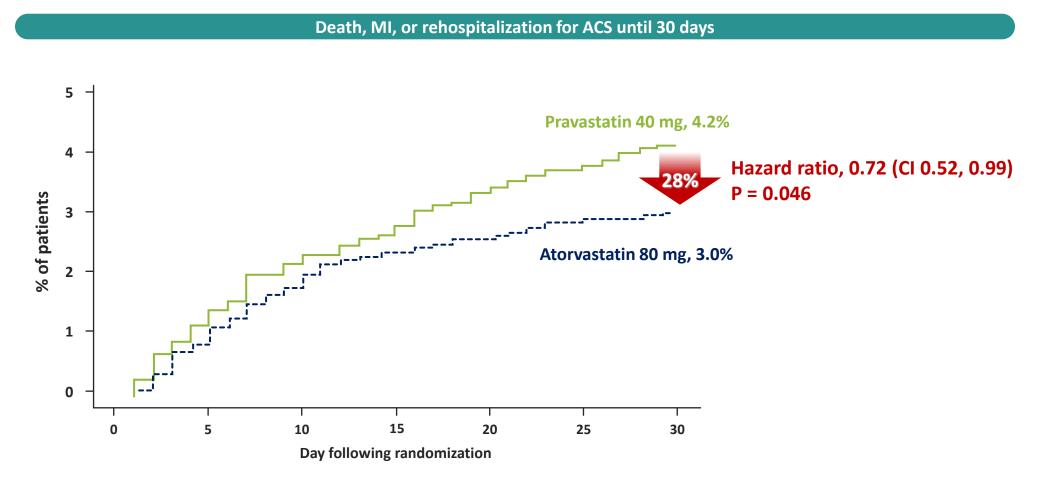
Constitutions for ASCVD Patients


Recommendation	Class	LOE
For ASCVD patients, Target LDL cholesterol < 55 mg/dL or more than 50% reduction of baseline value	I	Α
For AMI patients, use of high-dose statin regardless of baseline LDL cholesterol value		Α

Early Benefit of High-intensity Statin Therapy in ACS Patient


Early Atorvastatin 80 mg therapy after ACS: MIRACL Trial

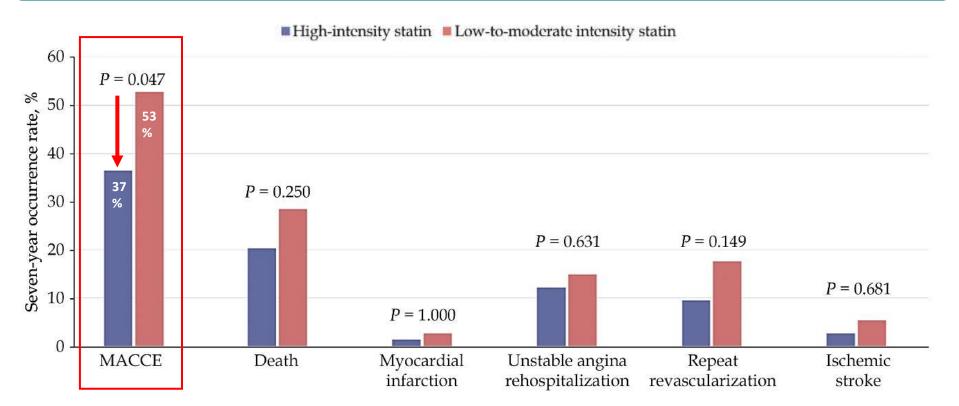
Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) trial


Atorvastatin 80 mg therapy after ACS: PROVE-IT 22

Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in MI (PROVE-IT 22) trial

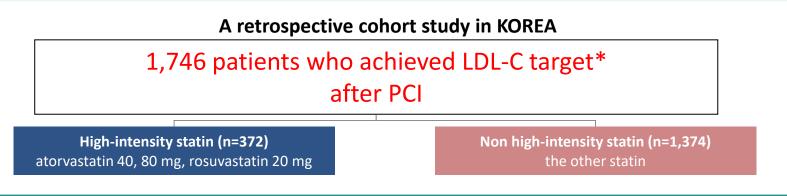
Early benefit at 30 days of Atorvastatin 80 mg therapy after ACS: PROVE-IT 22

Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in MI (PROVE-IT 22) trial

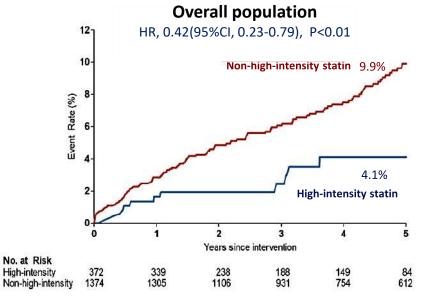


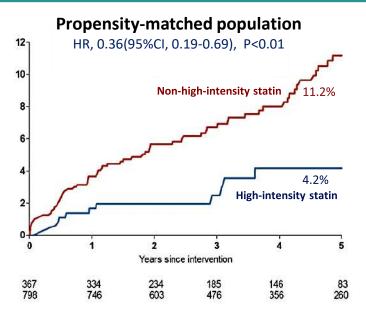
In Korean older patients with MI, High-intensity statin showed significantly lowered MACCE than low-to-moderate intensity statin

A retrospective cohort study in KOREA


546 elderly (>75 years) patients with MI, Follow-up: ~7 years

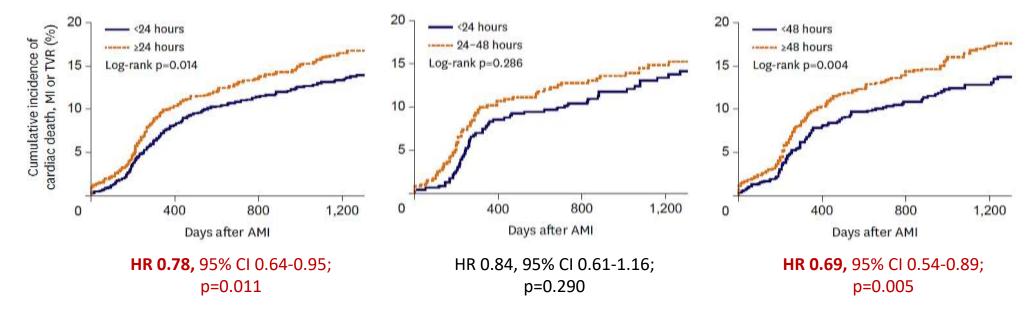
Incidence curve of MACCE for up to seven years in propensity score-matched⁺ cohort




⁺The matching variables comprised mostly of the baseline characteristics, including age, sex, hypertension, diabetes mellitus, dyslipidemia, smoking history, prior MI, prior PCI, prior CABG, prior stroke, prior congestive HF, prior CKD, height, body weight, BMI, admission SBP, DBP, heart rate, Killip class, clinical diagnosis, troponin I, creatine kinase-MB isoform, serum creatinine, eGFR, total cholesterol, TG, HDL-C, LDL-C, plasma glucose, echocardiographic left ventricular end-diastolic dimension, left ventricular end-systolic dimension, and left ventricular ejection fraction. *MACCE, major adverse cardiac and cerebrovascular events, defined as all-cause death, MI, rehospitalization due to unstable angina, repeat revascularization, and ischemic stroke

High-intensity statin therapy in patients achieving treatment target for LDL-C after PCI

Kaplan–Meier estimates of the incidence of the primary end point (cardiac death, MI, or stroke)


*LDL-C <70 mg/dL or >50% reduction from baseline level

COREA-AMI: Early statin initiation in statin-naïve AMI patients undergoing PCI

The Convergent Registry of Catholic and Chonnam University for AMI (COREA-AMI) 3,921 statin-naïve patients undergoing PCI

		Group 1	Group 2		Group 3	
Statin initiation time	Admisson	24	hr	48 hr		→

Kaplan-Meier curves for cumulative incidence of cardiac death, myocardial infarction or TVR

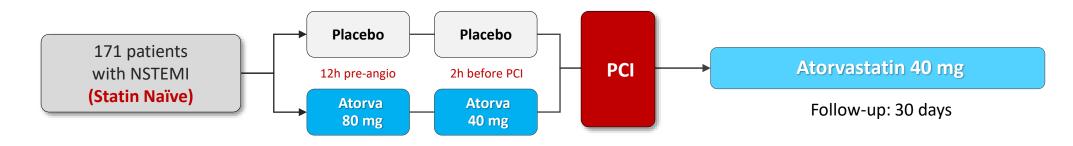
TVR, target-vessel revascularization

Effect of High-intensity Statin Pretreatment in ACS Patient Undergoing PCI

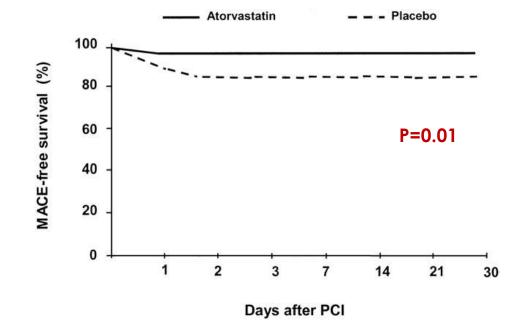
Short-Term high-dose atorvastatin pretreatment in patients With ACS undergoing PCI

A Meta-Analysis of 9 RCTs published up to March 2013

Atorvastatin 80 mg immediate or 12 hours before PCI (n=476) vs. placebo/10 mg(n=476)


	atorvas	tatin	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Kim 2010	5	86	9	85	15.0%	0.55 [0.19, 1.57]	
Liu 2011	6	46	13	40	23.1%	0.40 [0.17, 0.96]	
Patti 2007	4	86	14	85	23.4%	0.28 [0.10, 0.82]	
Post 2012	2	20	2	22	3.2%	1.10 [0.17, 7.09]	
Ren 2012	0	36	0	49		Not estimable	
Wang 2013	6	40	12	39	20.2%	0.49 [0.20, 1.17]	
Yu 2011	1	41	9	40	15.1%	0.11 [0.01, 0.82]	
Total (95% CI)		355		360	100.0%	0.39 [0.25, 0.61]	•
Total events	24		59				
Heterogeneity: Chi ^z =	3.74, df=	5 (P = 0).59); l ^z =	0%			
Test for overall effect:	Z= 4.15 (I	P < 0.00	001)				0.02 0.1 1 10 50 Favours atorvastatin Favours control

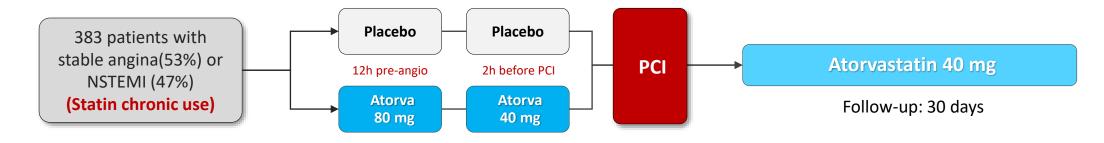
Relative ratio of MACEs at 30 days


RR, 0.39 (0.25-0.61) 61%

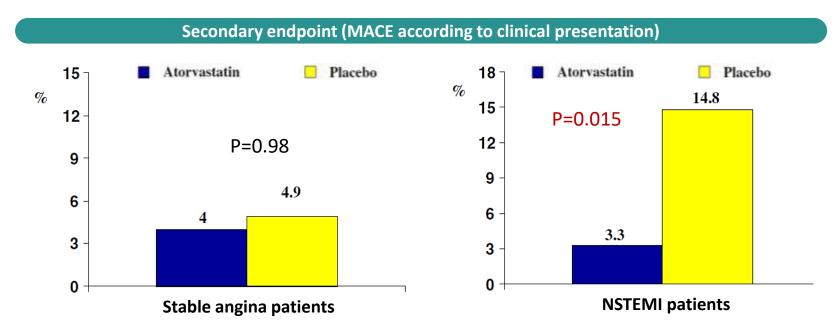
* MACE was defined as the composite of death, MI and target-vessel revascularization

ARMYDA-ACS: 30-day MACE of atorvastatin pretreatment in ACS patients undergoing early PCI

30-day incidence of MACE

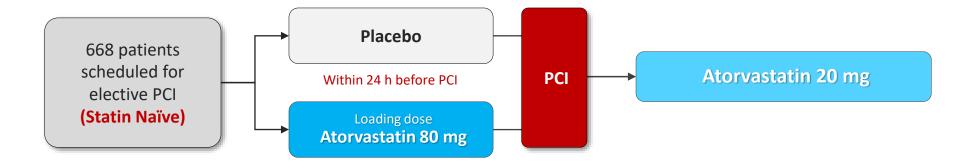


	Atorvastatin (n=86)	Placebo (n=85)	P-value
Death	-	-	
MI	4(5)	13(15)	0.04
TVR	_	1(2)	1
Total MACE	4(5)	14(17)	0.01


*MACE, death, MI, target-vessel revascularization

ARMYDA-RECAPTURE

Effect of atorvastatin reloading in patients on chronic statin undergoing PCI


Primary endpoint(MACE) : atorvastatin 3.7% vs. placebo 9.4%; p=0.037

ARMYDA, Atorvastatin for Reduction of MYocardial Damage During Angioplasty; MACE, major adverse cardiac event; TVR, target vessel revascularization.

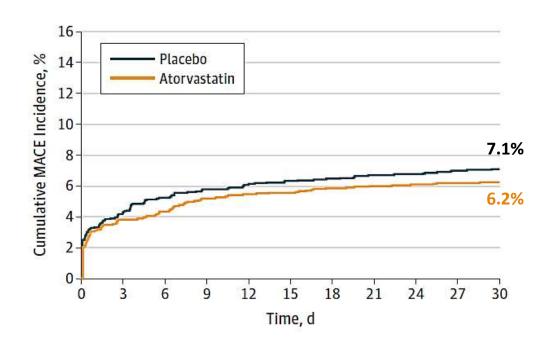
NAPLES trial

Effect on periprocedural MI of single, atorvastatin 80 mg before PCI

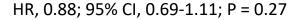
Creatine kinase myocardial isoenzyme(CK-MB) & Troponin I(TnI) increase at 6 and 12 h after PCI

	Atorvastatin (n=338)	Placebo (n=330)	P-value
Incidence of CK-MB increase >3x ULN	9.5%	15.8%	0.014
Incidence of Tnl increase >3x ULN	26.6%	39.1%	<0.001

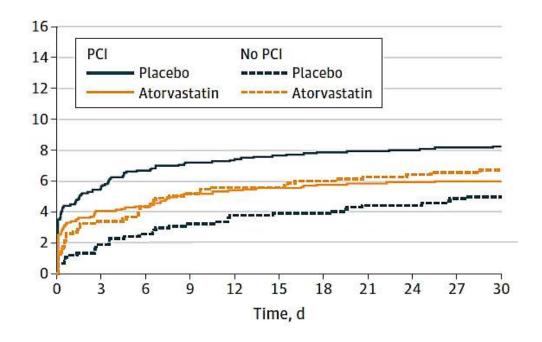
ULN, upper limit of normal


SECURE-PCI

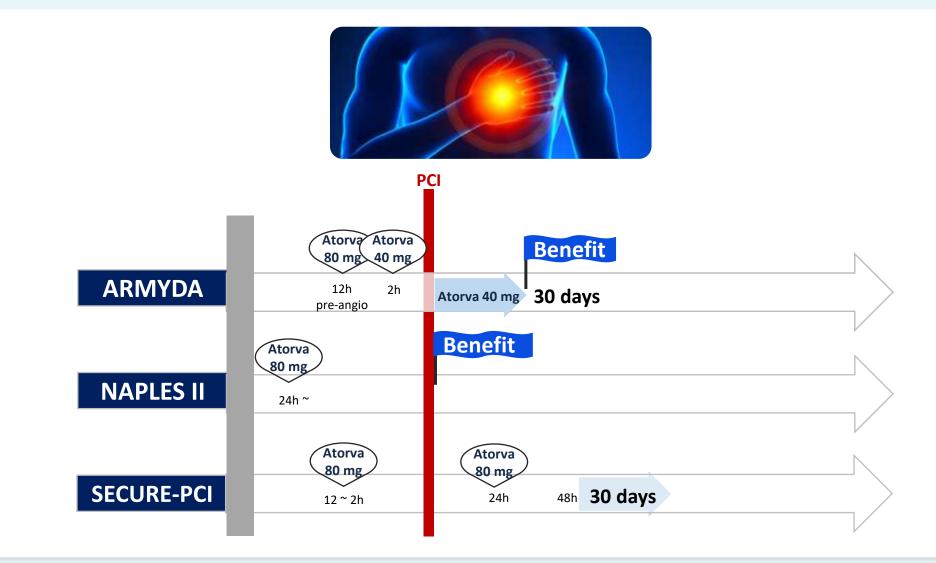
Statins Evaluation in Coronary Procedures and Revascularization



Patient Population	Primary End Point
 Mean 61.8 years UA(14.5%), NSTEMI(60.7%), STEMI(24.8%) Planned invasive management within the next 7 days PCI(64.7%), CABG(8%), others(27.3%) 	 Major adverse cardiovascular events All-cause mortality MI stroke unplanned coronary revascularization


SECURE-PCI: Primary outcome

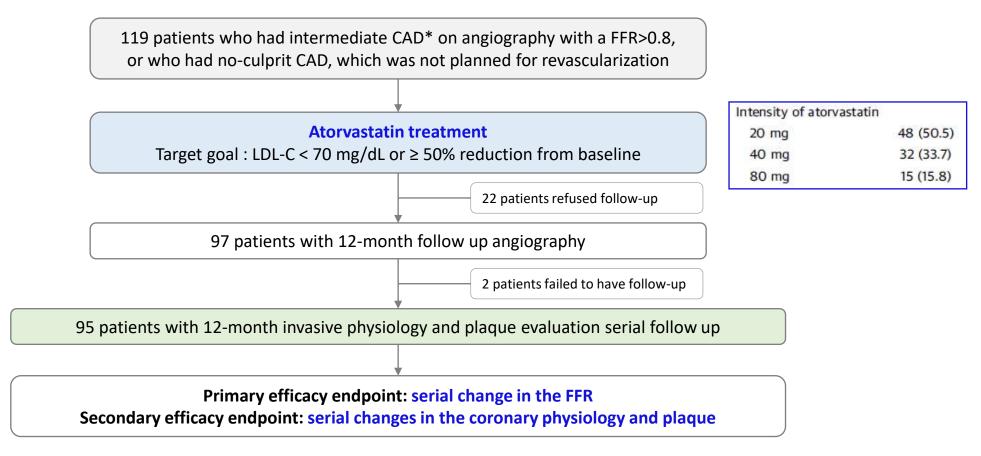
All patients (primary analysis)


All patients by PCI (secondary analysis)

• PCI: HR, 0.72; 95% CI, 0.54-0.96; P = 0.02

• No PCI: HR, 1.36; 95% CI, 0.89-2.09; P = 0.15

Pretreatment in ACS Patients Undergoing PCI



Plaque Regression in Stable ACS Patients

Effect of Atorvastatin on coronary flow index and plaque parameters in patients with CAD

A prospective multicenter observational study(FORTE)

FORTE, Effect of Atorvastatin on Fractional Flow Reserve in Coronary Artery Disease; FFR, fractional flow reserve *30-80% diameter stenosis by visual estimation

Changes of Coronary Flow after Atorvastatin therapy

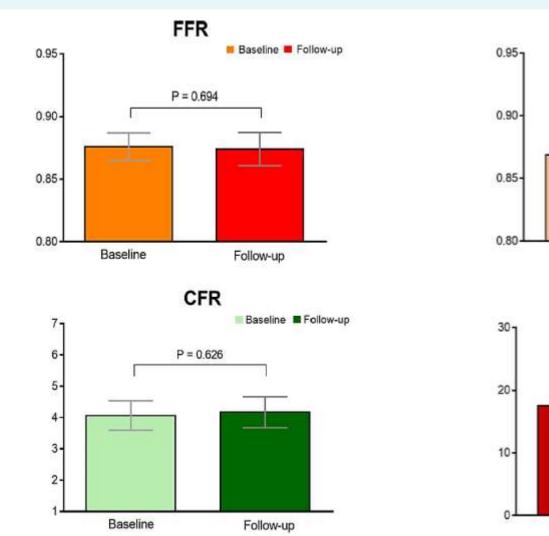
Pd/Pa

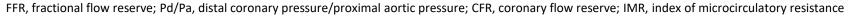
P = 0.242

IMR

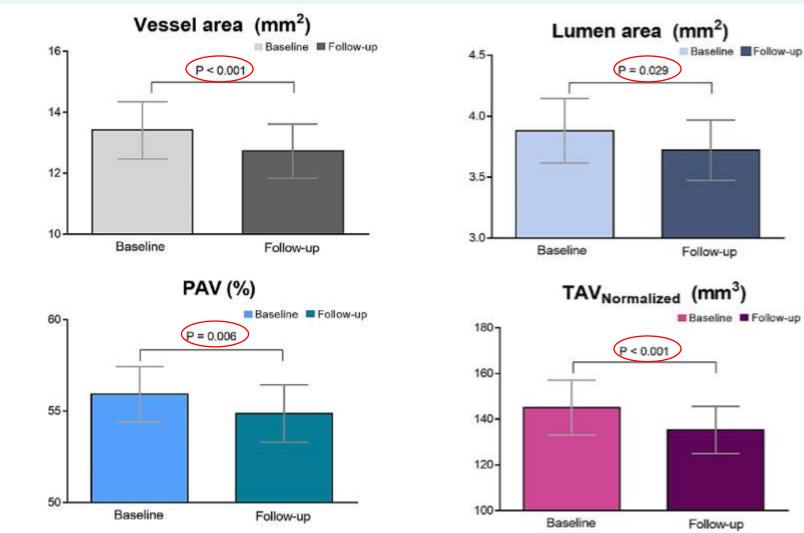
P = 0.779

Baseline

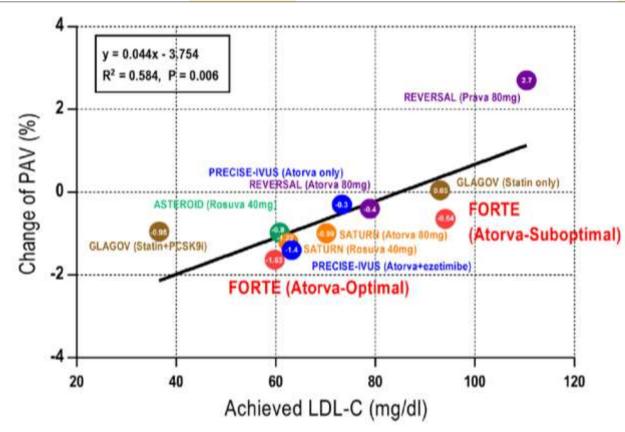

Baseline


Baseline Follow-up

Follow-up


Baseline Follow-up

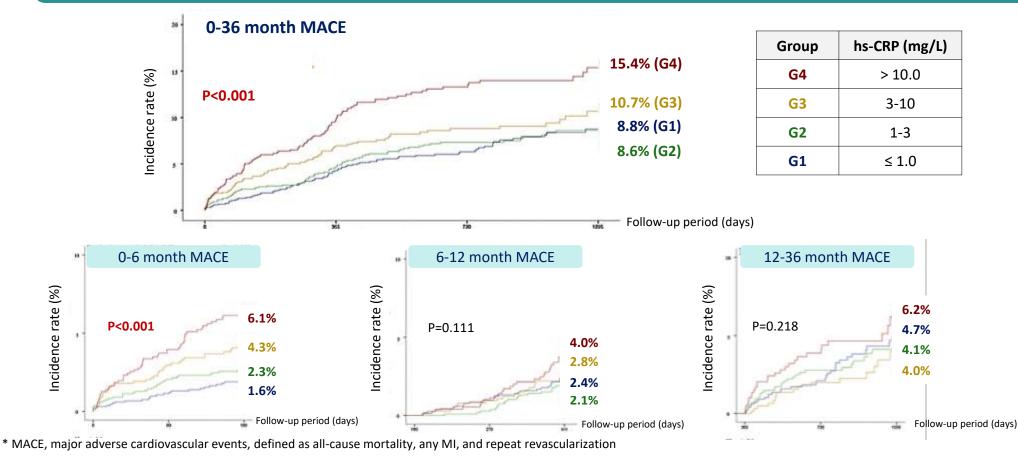
Follow-up


Changes of Coronary Plaque after Atorvastatin therapy

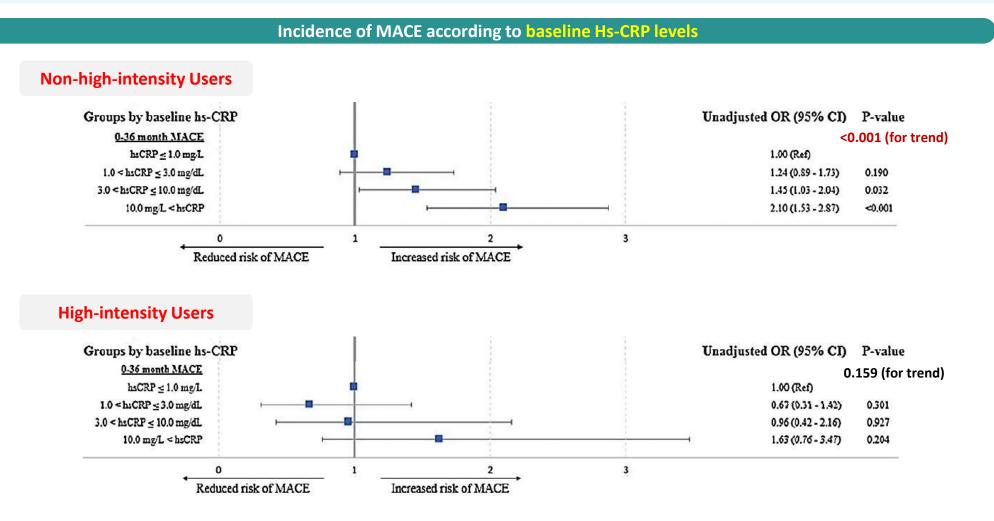
PAV, percent atheroma volume; TAV, total atheroma volume

Relationship Between Achieved LDL-C Levels and Change in PAV

		Optimal Trea	tment (n = 39)			Suboptimal Tre	eatment (n = 56)	
	Baseline	12 month	Change (%)	P value	Baseline	12 month	Change (%)	P value
LDL-C (mg/dL)	114.8	59.8	-55.0 (-47.9%)	<0.001	123.5	94.1	-29.4 (-23.8)	<0.001
PAV, %	56.81	55.18	-1.63 (-2.9%)	0.031	55.28	54.64	-0.64 (-1.2%)	0.092


Inflammatory Risk and Statin Therapy in ACS Patient Undergoing PCI

KAMIR-NIH, Korea Acute Myocardial Infarction-National Institutes of Health **Time-dependent prognostic effect of hs-CRP in AMI**


A retrospective cohort study

4,410 AMI patients underwent successful PCI with statin therapy

Incidence of MACE according to pre-specified time-periods and baseline Hs-CRP levels

Effect of high-intensity statin therapy by baseline hs-CRP in AMI patients undergoing successful PCI

* MACE, major adverse cardiovascular events, defined as all-cause mortality, any MI, and repeat revascularization

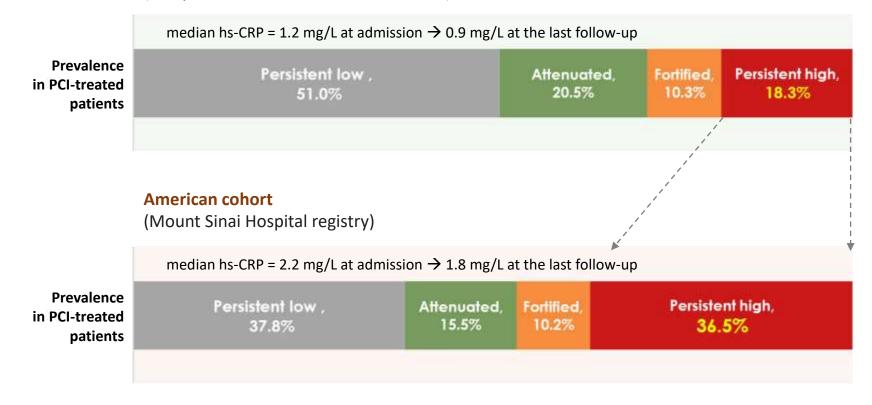
Residual inflammatory risk(RIR) in Korean patients with CAD undergoing PCI

A retrospective cohort study PCI-treated patients with serial hs-CRP values (on admission & 1-month post PCI) (n=4,562) 4 group according to serial hs-CRP hs-CRP cutoff: 2 mg/L **Persistent low RIR Attenuated RIR Fortified RIR Persistent high RIR** Phenotype of RIR Low on-admission Low on-admission High on-admission **High** on-admission Low 1-month Low 1-month High 1-month High 1-month Persistent low, Prevalence Attenuated, Fortified Persistent high, 20.5% 10.3% 18.3% in PCI-treated patients 51.0%

(n=934)

(n=835)

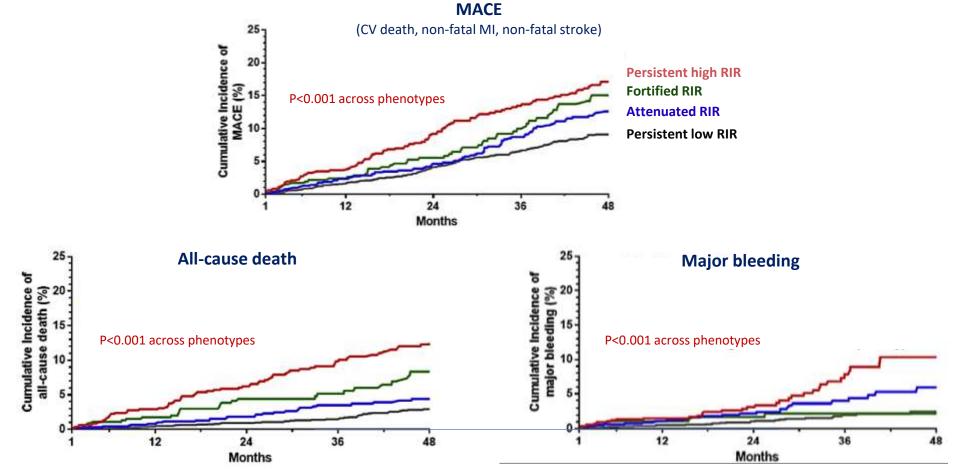
(n=468)


RIR, residual inflammatory risk; hs-CRP, high-sensitivity C-reactive protein; PCI, percutaneous coronary intervention

(n=2,325)

East Asian had a lower prevalence of persistent high RIR compared with American

East Asian cohort : median hs-CRP = 1.2 mg/L


(Prospective 2-center database in Korea)

RIR, residual inflammatory risk; hs-CRP, high-sensitivity C-reactive protein; PCI, percutaneous coronary intervention

Risks of clinical events were significantly different across phenotype of residual inflammatory risk

Kaplan-Meier curves for adverse clinical events, stratified by phenotype of residual inflammatory risk (RIR)

RIR, residual inflammatory risk; MACE, Major adverse cardiac events

Persistent high RIR was significantly associated with baseline characteristics and statin therapy

The Determinants of Persistent High RIR vs Other RIRs

	OR (95% CI)	P value	
Index presentation with MI		-	
Age (per 1-y increase)	1.02 (1.01-1.02)	< 0.001	
Smoking	1.57 (1.30-1.89)	< 0.001	
Diabetes mellitus	-	-	
Chronic kidney disease	1.91 (1.55-2.35)	< 0.001	
Hemoglobin (per 1 g/dL increase)	0.90 (0.85-0.94)	< 0.001	
Previous stroke	-		
WBC (per 10 ³ /mm ³ increase)	1.07 (1.04-1.09)	< 0.001	
LDL cholesterol (per 1 mg/dL increase)	1.00 (1.00-1.01)	< 0.001	
HDL cholesterol (per 1 mg/dL increase)	0.99 (0.98-0.99)	<0.001	
Multivessel disease	1.30 (1.10-1.52)	0.002	
Medication: statin	0.65 (0.46-0.92)	0.016	

Multivariable Analysis

RIR, residual inflammatory risk; WBC, white blood count

Key Messages

- Contemporary clinical guideline emphasize mandatory use of high-dose statin in ACS or PCI patients on the basis of pivotal RCTs.
- Benefit of high-dose statin was remarkable when it used as soon as possible in the early period.
- High-intensity statin pretreatment was beneficial in patients with stable CAD or ACS who are undergoing PCI.
- Statin therapy was beneficial for plaque stabilization and/or regression in ASCVD patients and reduction of residual inflammatory risk in ACS patient undergoing PCI.