TCT Asia Pacific 2023

OPENING THE BLACK BOX OF THE MICROCIRCULATION:

Absolute Flow And Resistance Measurement

Seoul, May 8 th, 2023

Nico H. J. Pijls, MD, PhD Catharina Hospital, Eindhoven, The Netherlands

Potential conflicts of interest

I have the following potential conflicts of interest to report:

- Research contracts : *Abbott*
- Consulting: *Abbott, Heartflow (SAB)*
- Stockholder of a healthcare company: *Philips, GE, ASML, Heartflow*
- Other(s): patents pending in the fields of coronary microcirculation and aortic valve stenosis

Opening The Black Box of The Microcirculation

Presently, we have excellent methods to assess epicardial coronary artery disease (FFR, IVUS, OCT)

.... but the coronary microcirculation is still a black box

For investigating the microcirculation, we only have surrogates of coronary blood flow (and microvascular resistance)

Doppler flow velocity (cm/s)

Bolus thermodilution T_{mn} (s)

🕝 CoreAalst | 🎯 OPTIMA

Despite the growing interest in studying the microcirculation of the heart ("ANOCA", "INOCA", "MINOCA")

- ... these present invasive techniques to assess the microcirculation, are crude, inaccurate, and operator-dependent
- **Doppler**: not specific for microcirculation
 - inaccuracy of measurement $\geq 20\%$
 - no adequate signals in \geq 30% of patients
 - signal <u>extremely</u> operator-dependent

• IMR: - easier to perform, sometimes quick, sometimes very long

- inaccuracy of ~ 20% (or more in resting "Tmn")
- operator-dependent, injection technique is important
- CFR unreliable and often overstimated

Both require infusion of adenosine: not a big deal, but some don't like it

Consequently, a lot of our knowledge about the microcirculation is limited, often speculative, and open for multiple interpretations

The ideal technique to assess the microcirculation, should be:

- understandable from sound physiology
- easy to perform with standard PCI equipment
- accurate, reproducible, and quantitative
- operator-independent

Measurement of absolute flow and resistance by thermodilution and continuous infusion of saline

Principle of continuous thermodilution for absolute Q & R measurements

Saline enters the proximal coronary artery at a temperature of 3°C below blood temperature &

After complete mixing of blood and saline, the "mixed" temperature equals 0.5 °C below blood temp

> Blood flow must be 6 x infusion flow of saline

is known infusion rate of saline (mL/min) are the **differences** vs body temperature (°C) accounts for **specific heats** of saline and blood

- Coronary Pressure and Temperature can be measured very accurately (up to 2 mmHg and 0.01 °C) using the Abbott PressureWire[®]
- Microvascular Resistance (R_{μ}) equals pressure divided by flow
- If Myocardial Flow is calculated in ml/min , also Microvascular Resistance (R_{μ}) can be measured accurately in mmHg/l/min or Wood Units (WU)

Practicalities

EQUIPMENT for Continuous thermodilution for absolute Q & R measurements

Injector/infusion pump

Dedicated infusion catheter (RayFlow, Hexacath)

Equipment to perform Continuous Thermodilution

PRESSURE/TEMPERATURE WIRE (Abbott)

RAYFLOW CATHETER (HEXACATH)

COROVENTIS

INFUSION PUMP (POWER INJECTOR)

Some important practicalities (1)

 To apply this method, homogeneous *complete mixing* of saline and blood is mandatory. This can *not* be achieved be a regular infusion catheter, but only by the so-called monorail RayFlow[®] infusion catheter (*Hexacath, Paris*)

Cross-section close to tip

- monorail catheter 2.2 F
- 4 outer sideholes for saline infusion
- 2 inner sideholes for measuring infusion temperature, when pressure/temp sensor is pulled back

Infusion lumen

wire lumen

Infusion Catheter For Thermodilution (RayFlow ®)

(complete mixing of blood and saline)

without guidewire

with guidewire

End-hole catheter

RayFlow^R Catheter

van 'tVeer M, Toth G et al EuroInterv 2016;12:701-707

RayFlow [®] monorail infusion catheter:

- Manufactured by Hexacath, Paris, France
- CE approved (Europe) since 2017
- FDA approved (USA) on April 12th, 2023
- PDMA approval (Japan) expected Q2-2023
- Approved in Korea in 2022

Some important practicalities (2): rest and hyperemia

In suspected microvascular disease, ANOCA, MINOCA, NOCAD, etc, the index artery to investigate is generally the LAD

Resting Measurements: 10 ml/min of saline in LAD

Hyperemic measurements: 20 ml/min of saline in LAD

NO separate hyperemic drug necessary; 20 ml/min of saline induces maximum hyperemia (Gallinoro et al, EuroIntervention 2021;17:e671-e679 De Bruyne et al, JACC 2021;78:1541-1549)

Large LCX or Large RCA:10 ml/min (rest) and 20 ml/min (hyperemia)Small or middle-sizes RCA or LCX:8 ml/min (rest) and 15 ml/min (hyperemia)

Saline infusion at 20 ml/min induces true maximum hyperemia:

Flow (saline + adeno vs saline alone)

Resistance (saline + adeno vs saline alone)

Scatterplots and corresponding Bland-Altman plots comparing invasive measurements of absolute hyperemic flow (**A**) and microvascular resistance (**B**) with and without adenosine. Abbreviations as in figure 3.

Resting conditions

Resting conditions

Resting R_{μ} of the anterior wall = 1484 WU

Maximum hyperemia (= minimal microvascular resistance)

Maximum hyperemia (= minimal microvascular resistance)

Hyperemic (= minimal) R_{μ} of the anterior wall = 386 WU

Absolute CFR = 227/68 = 3.4

Some important practicalities (3):

FLOW (**Q**) which is measured is total flow distal to the tip of the infusion catheter

MICROVASCULAR RESISTANCE (\mathbf{R}_{μ}) is the resistance of the myocardium distal to the tip of the infusion catheter

In case of INOCA, MINOCA, etc you will place the tip in the Proximal coronary artery (generally the LAD).

In case of , for example, measuring flow & resistance in an Infarction area, you will place the tip close to the stent

Some important practicalities (4): 2 separate runs or one long run

Validation

Accuracy In vitro

Accuracy In dogs

van 'tVeer M, Toth G et al EuroInterv 2016;12:701-707

Accuracy

In humans using H₂O-PET

Repeatability

Gallinoro E, De Bruyne B et al. EuroIntervention 2023;18-online publish-ahead-of-print

indicates the extreme accuracy of these measurements

"1 + 1 = 2" study

398 ml/min + 221 ml/min = 619 ml/min ~ 616 ml/min

Pressure-Flow Relationship at hyperemia in Humans

S. Fournier and B. De Bruyne JACC JACC 2019

Safety:

• Keulards et al: EuroIntervention 2021; 17: 229-232

213 coronary arteries in 100 consecutive patients:

- 1 dissection related to Amplatz guiding
- 6 times transient AV-block in RCA (stop infusion and repeat at lower infusion rate)
- In literature: one case of coronary dissection due to mistake in pump-setting: 20 ml/sec instead of 20 ml/min ("60 x overdose")
- NOTE: generally, the *patient does not feel anything*.
 - complete resting and hyperemic measurement takes 5-10 minutes
 - but you can continue infusion much longer without problems.
 - 5 % of patients feel a little bit of "adenosine-like" chest pain during hyperemia

Summary

- Continuous thermodilution allows *absolute coronary flow (Q)* and *microvascular resistance (R_µ)* measurements
- These measurements are accurate, reproducible, quantitative and *operator-independent*
- This degree of precision opens the door to the *investigation of the microcirculation*
- Finally: absolute flow & Resistance is "perfusion territory dependent", but that problem is solved by:

-----> Microvascular Resistance Reserve (MRR)

but.....let's first go to a live case from OLV Heart Center Aalst (Dr De Bruyne and team)

More Information and Practical Instructions for Absolute Coronary Blood Flow Microvascular Resessitance Measurements, and Microvascular Resistance Reserve (MRR) :

Send e-mail to:

ingrid.aarts@catharinaziekenhuis.nl

for receiving: - complete portfolio with all available literature

- practical manual to perform the measurements
- paper princeps about Microvascular Resistance Reserve (MRR)
- the video with live case from Aalst

Thank you

Patient with repetitive short runs of VT

During SR: Q = 280 ml/minR= 292 Wood UnitsDuring VT: Q = 200 ml/minR= 301 Wood Units

saline infused at 20 ml/min

temperature of saline is 5° below blood temperature after mixing, temperature of mixtate is 1° below blood temp

blood flow must be 5 x infusion flow of saline

Sideholes are needed to obtain complete mixing of the indicator Without the 4 sideholes, mixing is incomplete and unpredictable

RayFlow ® multifunctional infusion catheter

- <u>Monorail</u> infusion catheter with double lumen (*Hexacath, Paris*)
- <u>Inner lumen</u> to measure the infusion temperature
- <u>Outer lumen</u> to infuse saline via side holes

Hyperemic response after Saline Infusion vs Adenosine

Adjedj J et al, JACC 2016

Saline infusion induces true maximum hyperemia:

Scatterplots and corresponding Bland-Altman plots comparing invasive measurements of absolute hyperemic flow (**A**) and microvascular resistance (**B**) with and without adenosine. Abbreviations as in figure 3.

Everaars et al, Europ Heart J, submitted

Side Effects ?? ---> Safety study (N=100)

- Actually, the *only* side effects can be transient and innocent AV block with infusion of too high dose of saline in RCA
- Disappears within seconds after stopping infusion
- Repeat measurement at lower infusion rate
- You can continue measurement for many minutes and repeat it within 1 minute
- No drugs, no touch, operator-independent, and higly reproducible

Pressure-Flow Relationship in Humans

S. Fournier and B. De Bruyne JACC JACC 2019

Pressure-Flow Relationship at hyperemia in Humans

S. Fournier and B. De Bruyne JACC JACC 2019

Saline enters the proximal coronary artery at a temperature of 3°C below blood temperature &

After complete mixing of blood and saline, the "mixed" temperature equals 0.5 °C below blood temp

Blood flow must be 6 x infusion flow of saline

Q = 65 mL/min

Q_{saline} T_{saline} , T_{mix} 1.08 is known infusion rate of saline (mL/min) are the **difference** vs body temperature (°C) accounts for **specific heats** of saline and blood

🕞 CoreAalst | 🎯 OPTIMA

Q**b** = 20 x (-5.27 **/** -0.85) x 1.08 = 134 ml/min

 $Qb = 134 \text{ ml/min} \longrightarrow \text{normal} \text{max flow} = 100/86 \times 134 = 156 \text{ ml/min}$

Q = 20 x (-5.27 *I* -0.85) x 1.08 = 134 ml/min

Absolute microvascular resistance = P_d / Q (x80.000) = 380 Wood Units

De Bruyne, Pijls, Collet, Fearon et al J Am Coll Cardiol 2021;78:1541–1549

🕞 CoreAalst | 🎯 OPTIMA

Coroventis radio-receiver system (fully integrated in cath lab)

Reproducibility: manual vs automatic R_{μ} (G) (H) 800 SD = 57.81 *R* = 0.92, *p* < 0.001 ICC = 0.92 (0.81 - 0.96)250 R_{Hyp} - Auto 600 \bigcirc ULA = 126.25 R_{Hyp - Auto}(WU) \bigcirc Bias = 12.95 400 \cap RHyp LLĀ= - 100.34 -250 200 200 6<u>0</u>0 8<u>0</u>0 400 250 500 750 0 $(R_{Hyp} + R_{Hyp - Auto})/2$ $R_{Hyp}(WU)$

Candreva A, De Bruyne B et al. Catheter Cardiovasc Interv. 2022;100:199–2