TCTAP 2012 Left main & Bifurcation Summit April 26, 2012, 10:06-10:18

Why "FFR" and Why "Not FFR" in Bifurcation Lesions

Bon-Kwon Koo, MD, PhD, FACC

Seoul National University Hospital, Seoul, Korea

Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

	Class ^a	Level ^b
FFR-guided PCI is recommended for detection of ischaemia-related lesion(s) when objective evidence of vessel-related ischaemia is not available.	I	А
DES ^d are recommended for reduction of restenosis/re-occlusion, if no contraindication to extended DAPT.	T	А
Distal embolic protection is recommended during PCI of SVG disease to avoid distal embolization of debris and prevent MI		в

How can we achieve "FAME" in complex bifurcation lesions?

Why FFR? Why "Not FFR"?

FFR at the right time and at the right place

- Pre-intervention
- After main branch stent implantation
- After side branch balloon angioplasty
- After side branch stenting

Why FFR?

Why FFR?

Diagnostic accuracy of anatomic parameters in pure SB ostial lesions

□ Sensitivity □ Specificity ■ PPV ■ NPV

Side branch FFR: Influence of MB stenosis

Anatomical & functional Medina 0,0,1 lesion?

Pullback pressure tracing

Influence of other stenoses in complex lesions

Left main FFR?

SNUH Cardiovascular Center

Why FFR? Why "Not FFR"?

FFR at the right time and at the right place

- Pre-intervention
- After main branch stent implantation
- After side branch balloon angioplasty
- After side branch stenting

Why FFR?

Angiographic inaccuracy to predict the presence of myocardial ischemia

FFR vs. % diameter stenosis in jailed side branches

Koo BK, et al JACC 2005, EHJ 2008, Circulation CVI 2010

Ahn JM, et al. JACC intv 2012

FFR<0.75?

How accurate is our assessment?

Estimation of "functional significance" in 20 jailed SB lesions

Shin DH, Koo BK, et al. Cath Cardiovasc Interv 2011

FFR in all jailed side branches?

Ostial lesions

- Diffuse, multiple lesions
- Highly angulated lesions
- Heavily calcified lesions

Does side branch FFR matter?

Amount of ischemia is more important than the presence of ischemia

2010 ESC guidelines for revascularization

	Subset of CAD by anatomy	Class ^a	Level ^b
For prognosis	Left main >50% ^d	I	A
	Any proximal LAD >50% ^d	- I	Α
	2VD or 3VD with impaired LV function ^d	I	В
	Proven large area of ischaemia (>10% LV)	1	В
	Single remaining patent vessel >50% stenosis ^d	I	с
	IVD without proximal LAD and without >10% ischaemia	ш	A
For symptoms	Any stenosis >50% with limiting angina or angina equivalent, unresponsive to OMT	I.	A
	Dyspnoea/CHF and >10% LV ischaemia/viability supplied by >50% stenotic artery	lla	В
	No limiting symptoms with OMT	ш	с

Does side branch FFR matter?

Amount of ischemia is more important than the presence of ischemia

Why FFR? Why "Not FFR"?

FFR at the right time and at the right place

- Pre-intervention
- After main branch stent implantation
- After side branch balloon angioplasty
- After side branch stenting

Angiographic vs. FFR after kissing balloon

After MB stenting

After kissing balloon

Koo BK & de Bruyne B, Eurointervention 2010

IVUS vs. FFR after kissing balloon

Lumen Area: 2.3mm² MLD: 1.2mm Reference vessel diameter: 3.75mm

Functional outcome of Jailed side branches

Koo BK. et al, Eur Heart J 2008

Kumsars I, et al. Eurointervention 2012

Dissection after angioplasty

Slow flow

Why FFR? Why "Not FFR"? FFR at the right time and at the right place

- Pre-intervention
- After main branch stent implantation
- After side branch balloon angioplasty
- After side branch stenting

After left main 2 stenting with TAP technique

FFR after side branch stenting

The Acute Changes of Fractional Flow Reserve in DK (Double Kissing), Crush, and 1-Stent Technique for True Bifurcation Lesions

FEI YE, M.D., JUN-JIE ZHANG, M.D., NAI-LIANG TIAN, M.D., SONG LIN, M.D., ZHI-ZHONG LIU, M.D., JING KAN, M.D., HAI-MEI XU, M.D., ZHONGSHENG ZHU, M.D., and SHAO-LIANG CHEN, M.D., F.S.C.A.I., F.A.C.C.

From the Nanjing First Hospital, Nanjing Medical University, Nanjing, China

FFR before and after PCI (DK crush vs Provisional)

	DK Group	1-Stent Group	P Value
FFR preprocedure			
MB FFR at baseline	0.83 ± 0.15	0.89 ± 0.13	0.109
SB FFR at baseline	0.84 ± 0.15	0.91 ± 0.12	0.100
MB FFR at hyperemia	0.76 ± 0.15	0.83 ± 0.10	0.029
SB FFR at hyperemia	0.76 ± 0.15	0.83 ± 0.16	0.103
FFR postprocedure			
MB FFR at baseline	0.96 ± 0.02	0.95 ± 0.03	0.376
SB FFR at baseline	0.97 ± 0.02	0.96 ± 0.03	0.043
MB FFR at hyperemia	0.92 ± 0.04	0.92 ± 0.05	0.581
SB FFR at hyperemia	0.94 ± 0.03	0.90 ± 0.08	0.028

Efficacy of Fractional Flow Reserve Measurements at Side Branch Vessels Treated With the Crush Stenting Technique in True Coronary Bifurcation Lesions

Byoung Kwon Lee, MD; Hyun Hee Choi, MD; Kyung-Soon Hong, MD; Byoung-Keuk Kim, MD; Jaemin Shim, MD; Jung-Sun Kim, MD; Young-Guk Ko, MD; Donghoon Choi, MD; Yangsoo Jang, Myeong-Ki Hong, MD, PhD

Pre-KBA	MLD, MV/SB (mm)	Post-KBA MLD, MV/SB (mm)	Pre-KBA FFR	Post-KBA FFR
1	2.4/2.5	2.6/2.6	0.90	0.96
2	2.9/2.5	2.9/2.4	0.96	1.00
3	3.0/2.3	3.0/2.5	0.95	0.95
4	2.7/2.3	2.8/2.4	0.96	0.96
5	2.9/2.2	2.9/2.4	0.92	1.00
6	3.1/1.8	3.2/2.0	0.95	0.98
7	3.0/2.2	2.9/2.3	0.94	0.96
8	2.8/1.6	2.7/1.8	1.00	1.00
9	3.0/2.8	2.9/2.8	0.94	0.94
10	3.1/2.9	3.0/3.0	0.88	0.94
11	3.4/2.4	3.3/2.3	0.88	0.94
12	3.2/2.1	3.2/2.3	0.97	1.00

0.94 ± 0.04 0.97 ± 0.03

Clinical Cardiol 2010

Why FFR and Why "Not FFR" in Bifurcation Lesions?

	Why "FFR"?
Pre-intervention	• To assess the functional significance of MB
Post-MB stenting	• To assess the functional significance of jailed SB and to predict their outcomes
Post-SB angioplasty	 To assess SB procedural success and to predict the outcomes after KBI (non-left main)
Post-SB stenting	

