

Single Stent for all Bifurcations

T. Lefèvre and the ICPS Team, Massy, France

Conflict of interest to disclose

Minor fees from Boston scientific, Abbott Vascular, Terumo and Biosensor

We See Bifurcation Lesions Everyday

We See Bifurcation Lesions Everyday

Multivessel Disease Series

ARTS II Reality Syntax Leaders Nobori 2 53% 52% 70% 28% 33%

Tsuchida et al,EHJ 2007Lefèvre et al.,ECCO 2008Serruys et al.ESC 2008Windecker et al.EBC 2010

We See Bifurcation Lesions Everyday

- ✓ Need a standardized approach
- \checkmark Simple and safe
- ✓ High rate of success
- \checkmark Low rate of complications
- ✓ Good long term results

What should we know before selecting the **Optimal Technique**?

Structure-function scaling laws of vascular trees

Kassab et al. Eurointervention 2013; 8: 1461-3

Structure-function scaling laws of vascular trees

$$D_{mother}^{3} = D_{daughter 1}^{3} + D_{mother}^{3} + \dots$$

$$Murray's \ law$$

$$D_{mother} = 0.67^{*} (D_{daughter 1} + D_{mother}^{3} + \dots)$$

$$G. \ Finet$$

$$D_{mother}^{7/3} = D_{daughter 1}^{7/3} + D_{mother}^{7/3} + .$$

KB model

Finet et al. Eurointervention 2007; 3: 490-8

Huo et al. Eurointervention 2012; 7: 1310-16

Structure-function scaling laws of vascular trees

Kassab et al. Eurointervention 2013; 8: 1461-3

The 3 Diameters Rule

Muray's Law (DM+DM') x 0.678

The 3 Diameters Rule

POT + SKS

Kissing balloon post dilatation + *POT (Kaname^R)*

Bifurcation and Flow Modifications

 $ESS = \mu \cdot dv/dy$

 μ = viscosity dv/dy = spatial gradient of blood velocity at the wall

Adapted from Chatzisisis et al. JACC 2007

What About Carena Disease ?

Carena is usually free of disease

Virmani EBC 2007 Oviedo et al ACC 2008 Van der Giessen, et al. Euroint 2008 Nakazawa G, et al. JACC 2010 Suarez de lezzo, Euroint 2011

The Risk of SB Occlusion After MB Stenting is Mainly a Problem of Carena Shifting

Carena Shifting

Koo et al EBC 2008

EBC

The functional Significance of SB Ostial Lesions after MB stenting is Overestimated

Correlation Between FFR and % Stenosis (QCA) in Jailed SB

Koo BK et al J Am Coll Cardiol 2005;46:633–37

FFR after kissing balloon inflation

Koo BK, et al. Eur Heart J 2008

www.icps.com.fr

What are our Main Objectives ?

To Restore the natural configuration (fractal) of the bifurcation:

- SB open (better with non significant lesion)
- 3 diameters
- MB Stent well apposed
- Optimal rheology
- Easy access in both branches in the future

What are the Recommandations ?

US guidelines : bifurcation

CLASS I

 Provisional side-branch stenting should be the initial approach in patients with bifurcation lesions when the side branch is not large and has only mild or moderate focal disease at the ostium (726–729). (Level of Evidence: A)

CLASS IIa

 It is reasonable to use elective double stenting in patients with complex bifurcation morphology involving a large side branch where the risk of side-branch occlusion is high and the likelihood of successful side-branch reaccess is low (730–733). (Level of Evidence: B)

7 Randomized Studies With DES

 \sim

												\
Sudy	Stent	Patier	nts (n)	True	Cross-o	over (%)	0	CS	Final kis	Sim		ע(n) ד
		PS	CS	Bif. (%)	to CS	to PS	Techni	ique (n)				∖cs
BBC One	PES	250	250	83	2.8	1.6	Crush	10-				
								-15		+G		
								510	-+6	n		
						n	31)		5			
Nordic	SES	207	206		2-0	a		<u>19</u>	31	74	151	156
				vv6			12.	43				
			8			0	Other	69				
CACTUS				+3	Q	ND	Crush		90	92	150	152
			1		19	3	T stent	120	100	100	Ν	ID
		- 3		86	2.1	9.1	T stent	45	56	77		80
کر	N		43	ND	51.2	4.7	T stent	60	86	95	1	١D
							V stent	1				
	Í						Y stent	2				

Nordic I Procedural Data

Procedural Characteristics	MV n=207	MV+SB n=206	P value
SB stented	9 (4.3)	196(95.1)	<0.0001
Final kissing balloon	65 (32)	152 (74)	<0.0001
Procedural success	200 (97)	194 (94)	0.35
Procedure time, min	62 ± 51	76 ± 40	<0.0001
Fluoroscopy time, min	15±9	21 ± 10	<0.0001
Contrast volume, mL	233 ± 93	283 ± 117	<0.0001
Biomarker Elevation	n=153	n=126	P value
>3 elevation (%)	8	18	0.011
>5 elevation (%)	4	13	0.008
>10 elevation (%)	3	5	NS

www.icps.com.fr

Steigen TK et al. Circulation. 2006;114:1955-1961

Nordic I (n=413) **5 Years Safety and Efficacy**

Thuesen L et al. Presented at ACC 2011.

One stent when we can

An optimal strategy will help to decrease the need for SB stenting

Two stents when needed

Develop strategies to make it easy, safe and effective

Provisional Side Branch Stenting

What Are the Real World Data ?

Provisional SB-Stenting for Coronary Bifurcation Lesions: Evidence of Improving Procedural and Clinical Outcomes

Mylote et al. CCVI 2013

Provisional SB-Stenting for Coronary Bifurcation Lesions: Evidence of Improving Procedural and Clinical Outcomes

	2005 (n=300)	2009 (n=300)	p Value
Age (years)	65.9 ± 12.4	66.9 ± 11.4	NS
Diabetes (%)	25.0	25.3	NS
Prior MI (%)	8.0	18.0	0.0004
Prior PCI (%)	16.3	33.7	<0.0001
Prior CABG (%)	3.0	5.7	NS
ST-segment elevation MI (%)	7.9	8.7	NS
Stable angina (%)	19.4	48.8	NS
EF (%)	60.7±12.3	53.6±13.4	<0.0001
Left main (%)	25.7	24.7	NS
LAD (%)	45.0	48.3	NS
Two vessel (%)	45.7	38.6	NS
Three vessel (%)	31.3	36.3	NS
True bifurcation (%)	71.0	69.7	NS

Mylote et al. CCVI 2013

Provisional SB-Stenting for Coronary Bifurcation Lesions: Evidence of Improving Procedural and Clinical Outcomes

	2005 (n=300)	2009 (n=300)	p Value
6 F guide	97.3	97.0	0.99
IVUS (%)	9.3	6.0	0.13
Rotablator (%)	0.7	3.3	0.04
MB Stent type (%)			
Cypher	52.5	31.0	<0.0001
Taxus	47.5	11.0	<0.0001
Xience V	0	47.0	<0.0001
Other DES	0	11.0	<0.0001
POT (%)	0	36.3	<0.0001
Final kissing balloons (%)	93.5-	21.7	0.54
Non-compliant balloons %)	0	81.3	<0.0001
MB stent diameter (mm)	3.1 ± 0.4	3.0 ± 0.4	0.002
MB stent length (mm)	20.6 ± 6.6	227±7.2	0.0002
Side-branch stent (%)	22.3	9.0	<0.0001

Mylote et al. CCVI 2013

Provisional SB-Stenting for Coronary Bifurcation Lesions: Evidence of Improving Procedural and Clinical Outcomes

Mylote et al. CCVI 2013

Provisional SB-Stenting for Coronary Bifurcation Lesions: Evidence of Improving Procedural and Clinical Outcomes

Mylote et al. CCVI 2013

Provisional SB-Stenting for Coronary Bifurcation Lesions: Evidence of Improving Procedural and Clinical Outcomes

Mylote et al. CCVI 2013

Provisional SB-Stenting for Coronary Bifurcation Lesions: Evidence of Improving Procedural and Clinical Outcomes

Predictor of MACE (Multiple Cox Regression)

	Hazard Ratio	95% CI	p Value
Diabetes mellitus	1.65	0.92-2.97	0.09
Left main target bifurcation	1.85	1.04-3.29	0.036
Side branch stenting	2.31	1.27-4.20	0.006
PCI in 2005	1.86	1.03-3.37	0.04

Provisional SB-Stenting for Coronary Bifurcation Lesions: Evidence of Improving Procedural and Clinical Outcomes

Mylote et al. CCVI 2013

When to use a two-stent approach?

✓ Large side branches with ostial disease extending > 5 mm from the carina are likely to regime a two-stent strategy.

 Side branches whose access is particularly challenging should be secured by stenting once accessed.

✓ Poor SB result despite FKB with NC balloons.

Conclusion

Today the Gold standard technique in the treatment of bifurcation lesions with DES is provisional side branch stenting.

With a standardized approach, it is relatively simple and safe, and it can be used in the vast majority of cases.

Conclusion

✓ With an optimal technique a systematic two stents approach is needed in less than 5% of cases.

✓ And provisional SB stenting required in less than 10% of cases.

✓ When two stents are used, an optimal technique, including systematic kissing balloon inflation is warranted.