Radiation Management for Complex PCI

Gerald S. Werner, MD Klinikum Darmstadt GmbH, Darmstadt, Germany

TCTAP:

Disclosure

- The modified protocols for radiation exposure were implemented in cooperation with Siemens Healthineers, Forchheim, Germany
- Speaker honoraria from Abbott Vascular, ASAHI Intecc, Orbus-Neich, Philips, Shockwave, Siemens, Terumo

Radiation skin injury rarely reported in studies

0-0.1

< 0.01

Patel et al JACC 2013; 71: 160 - 164

0-11.1

3/2,857

TCTAP

Radiation skin injury

A 52-year-old patient after a (failed) CTO procedure

A LAD CTO was tried mostly in AP	
cranial with too many cine runs	

Effect	Threshold	Minutes fluoro	Minutes fluoro		
	uose (Gy)	20 mGy/min	200 mGy/min		
Transient erythema	2	100	10		
Permanent epilation	7	350	35		
Dry desquamation	14	700	70		
Dermal necrosis	18	900	90		
Telangiectasia	10	500	50		
Cataract	> 5	> 250 to eye	> 25 to eye		
Skin cancer	Not known	Not known	Not known		

J. Cardella, K. Faulkner, J. Hopewell, H. Nakamura, M. Rehani, M. Rosenstein, C. Sharp, T. Shope, E. Vano, B. Worgul, M. Wucherer: "Avoidance of Radiation Injuries from Medical Interventional Procedures", ICRP publication 85

Werner GS. EuroInterv 2018; e496-8

Radiation management for complex PCI

- Understand the readings of the X-ray equipment
- What determines high radiation
 - Lesion complexity
 - Body weight
 - X-ray equipment
 - Operator's interest in optimising the settings

You should watch your radiation speed continuously

TCTAP:

Radiation exposure in published studies

	Rathore ³¹	Michael 32	Christakopoulos 36	Maccia 33	Maeremans 35	Werner ¹⁶	Ge ²⁸
Years	2002-08	2006-11	2012-2015	2013-14	2014-15	2014-15	2015-17
Number of patients	1385	1363	748	710	1253	476	192
Body mass index [kg/m ²]	NA	NA	31	28	NA	29	26
Weight [kg]	64	NA	NA	80	NA	88	NA
Fluoroscopy time [min]	86	42	52	36*	35*	46	50
Air Kerma [Gy]	10.4	4.7	4.0	2.7*	1.6*	2.7	2.6
Dose rate [mGy/min]	121	112	77	75	46	59	52
Efficiency Index [min/Gy]	8.3	8.9	13.0	13.3	21.9	17.0	19.2

J-CTO Score and radiation exposure

Lesion complexity	Easy	Moderate	Complex	р
J-CTO Score	0-1	2-3	4-5	
	134	240	102	
Retrograde approach [%]	20.1 *)	51.5 *)	88.2	<0.001
Procedural success [%]	99.3	97.5	90.2 *)	<0.001
Duration of procedure [min]	97 ± 44 *)	$133\pm58\text{ *})$	183 ± 65	<0.001
Total fluoroscopic time [min]	26.8 ± 17.9 *)	$44.9\pm26.1~^{*})$	71.7 ± 33.6	<0.001
Contrast volume [ml]	$203\pm99\text{ *)}$	228 ± 98 *)	257 ± 96	<0.001
Air Kerma [mGy]	2108 ± 1356 *)) 2713 ± 1675 *)	3478 ± 1867	<0.001

Improvement in management is possible but still too much individual variability

Werner et al J Invasive Cardiol. 2021;33:E146-E54

Is it down to the equipment?

Clarity systems had the lowest Dose Rate Index But even with an "old" system you could achieve the same range of efficiency It seemed that Clarity limited the outliers

A comparison of noise-reduction protocols still so much operator dependent

Years Number of patients System	Balter ²⁴ 2012–14 53 Philips FD10	2012- 14 152 FD20	2012– 14 71 FD20 clarity	Busse ²⁷ 2011 98 Philips FD10	2013– 14 98 FD clarity	Maccagni ²⁹ 2016 60 Philips FD10	2017 127 FD10 clarity	Present study 2018–19 366 Siemens Artis Zee	2019 186 Modified protocol
Body mass index (kg/m ²)	30	30	28	28	28	27	28	29	29
Fluoroscopy time	30 ^a	32 ^a	53 ^a	18	16	44 ^a	52 ^a	33 ^a	34 ^a
Air kerma (mGy)	3410 ^ª	1930 ^a	1760 ^a	770 ^a	459 ^a	3256ª	2853ª	2040 ^ª	655ª
Dose-area product (cGy/cm ²)	23500*	18000 [~]	16900 [°]	5350°	2640°	20350°	18900~	12/19	3704°
Dose rate index (mGy/min)	113	60	33	43	35	74	55	65 ^a	20 ^a
Efficiency index (min/Gy)	9.1	17.0	26.3	23.4	28.7	13.1 ^a	17.5 ^a	15.3ª	50.1ª

Dose Rate Index normalizes AirKerma per min Fluoroscopy time

Werner et al Catheter Cardiovasc Interv. 2021;97:1196-206

What is radiation usually used for: Cine or Fluoro ? Dramatic changes over time with the same equipment !!!

Werner et al Cardiovasc Revasc Med. 2022;36:58-64

We exceeded the 5 Gy limit in 10.4 % of patents !

Werner et al Catheter Cardiovasc Interv. 2021;97:1196-206

Never exceed the 5 Gy limit ever again !!!

Radiation management for complex PCI

- Understand the readings of the X-ray equipment
- What determines high radiation
 - Lesion complexity
 - Body weight
 - X-ray equipment
 - Operator's interest in optimising the settings

Lower fluoro frame rate 7.5 vs 15, but...

Why is there not more of a difference ? Used 15 f/s for cine

- The contribution of cine runs to the total dose should not be underestimated
- Avoid cine runs when ever possible, use fluoro storage
- Cine at 7.5 f/s Abdelaal et al JACC Interv 2014; 7: 567–74

Werner et al J Invasive Cardiol. 2021;33:E146-E54

Changing angulation influences dose

Radioprotection for the operator

Randomized study in 60 patients (40 CTOs)

Murphy JC, et al Am J Cardiology. 2011;108:1408-1410

There is never too much protection for the operator

But do not forget the basic rule of Radiation physics: you cannot eliminate radiation, only attenuate it.

Zero-Gravity

Rampart^{IC}

Conclusion / Take-home Message

- The potential of further reduction of radiation exposure to the patient and the operator is still not optimized
- Operators are still often ignorant of ways to optimize their radiation use

 In my own practice, radiation is no longer the reason for abandoning a procedure