

Should We Do PCI in Diffuse Disease?

Carlos Collet, MD, PhD

Co-director Catheterisation Laboratory OLV Aalst, Belgium

28th TCTAP

Potential conflicts of interest

Within the past 12+ months, Carlos Collet has had a financial interest/arrangement or affiliation with the organization(s) listed below.

Institutional Support

- Abbott Vascular
- HeartFlow Inc
- GE Healthcare
- ShockWave Medical
- Boston Scientific
- Insight Lifetech
- Pie Medical
- Medis Medical Imaging
- Hexacath
- Coroventis
- Cathworks

Equity/stock options

- Medyria
- Xenter

Consultancy fees

- Abbott Vascular
- HeartFlow Inc
- GE Healthcare
- Boston Scientific
- Insight Lifetech
- Early Bird
- Pfizer
- Siemens
- Zoll

Others

CoreAalst BV

Patents filed: US20220164950A1, US20220175260A1, WO2022136637A1 and WO2021224458A1

How to detect diffuse disease

CAD Patterns

Anatomy versus physiology: CAD patterns

Diagnosis of diffuse disease

Using physiology to understand CAD

Single-point

Pullback

Outcomes of PCI in focal vs diffuse disease

Length

FFR

Outcomes of PCI by disease pattern

Diffuse disease and plaque characteristics

PPG and OCT vulnerable plaque features

Sakai et al.. JACC Cardiovasc Imaging. 2023. In press

PPG and calcium

Variables	Diffuse CAD Focal CAD (PPG ≤0.66) (PPG >0.66)		p-value
Number of vessels, n	60	60	_
Plaque burden at MLA, %	82.3 ± 9.8	87.1 ± 7.5	0.003
Lesion non-calcified plaque burden, %	77.5 ± 18.3	84.4 ± 14.9	0.027
Lesion calcified plaque burden, %	22.5 ± 18.3	15.7 ± 14.9	0.027
Calcium thickness, mm	1.4 ± 1.1	1.1 ± 1.1	0.121
Calcium length, mm	7.6 ± 7.6	3.6 ± 4.5	0.003
Calcium arc, degree	50.0 [10.0, 180.0]	20.0 [0.0, 95.0]	0.056
Agatston score per vessel	151.0 [45.8, 359.9]	50.2 [8.8, 165.8]	0.019

PPG and calcium

Variables	Diffuse CAD Focal CAD (PPG ≤0.66) (PPG >0.66)		p-value
Number of vessels, n	60	60	_
Plaque burden at MLA, %	82.3 ± 9.8	3 ± 9.8 87.1 ± 7.5	
Lesion non-calcified plaque burden, %	77.5 ± 18.3 84.4 ± 14.9		0.027
Lesion calcified plaque burden, %	22.5 ± 18.3	15.7 ± 14.9	0.027
Calcium thickness, mm	1.4 ± 1.1 1.1 ± 1.1		0.121
Calcium length, mm	7.6 ± 7.6	3.6 ± 4.5	0.003
Calcium arc, degree	50.0 [10.0, 180.0]	20.0 [0.0, 95.0]	0.056
Agatston score per vessel	151.0 [45.8, 359.9]	50.2 [8.8, 165.8]	0.019

Diffuse disease and outcomes after PCI

Diffuse disease: procedural outcomes

TABLE 2 Procedural Characteristics Stratified by Coronary Artery Disease Patterns							
	Overall (N = 103)	Focal (PPG ≥0.66) (n = 51)	Diffuse (PPG <0.66) (n = 52)	P Value			
Diameter stenosis, %	61.4 ± 15.7	$\textbf{65.2} \pm \textbf{16.4}$	57.6 ± 14.3	0.013			
PPG	0.65 ± 0.14	0.77 ± 0.06)	$\textbf{0.54} \pm \textbf{0.09}$	<0.001			
Predilatation	103 (100.0)	51 (100.0)	52 (100.0)	NA			
Postdilatation	101 (98.1)	49 (96.1)	52 (100.0)	0.467			
Intravascular imaging	20 (19.4)	4 (7.8)	16 (30.8)	0.007			
PIOS ^a	53 (51.5)	26 (51.0)	27 (51.9)	1.000			
Number of stents, per vessel	1.0 [1.0-2.0]	1.0 [1.0-2.0]	1.5 [1.0-2.0]	0.036			
Stent diameter	3.20 ± 0.41	$\textbf{3.23} \pm \textbf{0.44}$	3.17 ± 0.38	0.443			
Total stent length, mm	42.61±21.51	37.43±19.20	47.69±22.61	0.015			
Residual diameter stenosis	14.82 ± 9.13	14.78 ± 9.54	14.86 ± 8.80	0.962			
Residual SYNTAX score	2.16 ± 4.02	2.76 ± 4.84	$\textbf{1.57} \pm \textbf{2.92}$	0.146			
Post-PCI Pd/Pa	$\textbf{0.93} \pm \textbf{0.05}$	0.96 ± 0.05	$\textbf{0.91} \pm \textbf{0.04}$	< 0.001			
Post-PCI FFR	$\textbf{0.86} \pm \textbf{0.08}$	0.89 ± 0.07	$\textbf{0.83} \pm \textbf{0.07}$	<0.001			

Mizukami et al. JAHA 2022

Collet et al JACC Cardiovasc Interv. 2022 Dec 26;15(24):2506-2518.

PPG and change in FFR after OCT-guided PCI

Freedom from Angina is defined as SAQ-7 = 100

Collet et al JACC Cardiovasc Interv. 2022 Dec 26;15(24):2506-2518.

CoreAalst | OPTIMa

How to treat diffuse disease?

Treat diffusely diseased LAD with LIMA?

Focal disease Patent LIMA @ 3 months Diffuse disease Atretic LIMA @ 4 months

Shiono Y, Int J Cardiol. 2016 Nov 1;222:16-21. (Figures 1-3 with colored annotations)

Treat diffusely diseased LAD with LIMA?

How Dr. Johnson approaches diffuse disease?

Diffuse disease: decision-making using physiology

CoreAalst OPTIMA

Diffuse disease: decision-making using physiology

Exploring the epicardial pathway: LAD lesion

CoreAalst | OPTIMA

Conclusion

- The use of physiology with a pullback maneuver is required to detect hemodynamic diffuse disease.
- Diffuse disease has a low prevalence of high-risk plaques (TCFA) and more calcification.
- PCI in diffuse disease is less effective (i.e., lower post-PCI FFR, smaller MSA, and higher procedural injury) and more than half of the patients remain symptomatic after PCI.
- More data is warranted to define the best therapy for patients with diffuse disease.