TCTAP 2023 Late-Breaking Clinical Trials 2023 in Asia-Pacific

FFR vs. IVUS to Guide PCI

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

Disclosure Statement of Financial Interest

Within the past 12 months, I, [Bon-Kwon Koo] have had a financial inter est/arrangement or affiliation with the organizations listed below:

 Grant/Research Support: Institutional Research Grants from Abbott, Philips, and HeartFlow

Basics of CAD management: Find and Fix "ISCHEMIA"

2018 ESC/EACTS Guidelines on myocardial revascularization

The Task Force on myocardial revascularization of the European Society of Cardiology (ESC) and European Association for Cardio-Thoracic Surgery (EACTS)

Developed with the special contribution of the European Association for Percutaneous Cardiovascular Interventions (EAPCI

CLINICAL PRACTICE GUIDELINE: FULL TEXT

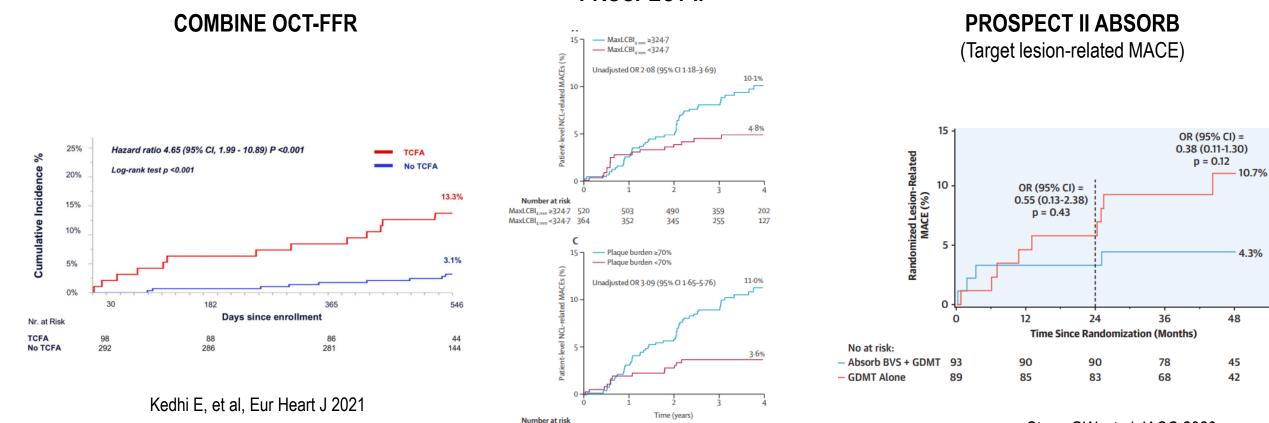
With PCI

2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization

A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

4.3. Use of Coronary Physiology to Guide Revascularization

Recommendations for the Use of Coronary Physiology to Guide Revascularization With PCI Referenced studies that support the recommendations are summarized in Online Data Supplement 5.


COR	LOE	RECOMMENDATIONS
1	A	 In patients with angina or an anginal equivalent, undocumented ischemia, and angiographically inter- mediate stenoses, the use of fractional flow reserve (FFR) or instantaneous wave-free ratio (iFR) is recommended to guide the decision to proceed with PCI (1-6).
3: No benefit	B-R	 In stable patients with angiographically intermediate stenoses and FFR >0.80 or iFR >0.89, PCI should not be performed (7-10).

Recommendations on functional testing and intravascular imaging for lesion assessment

Recommendations	Class ^a	Level ^b
When evidence of ischaemia is not avail- able, FFR or iwFR are recommended to assess the haemodynamic relevance of intermediate-grade stenosis. ^{15,17,18,39}	I	A
FFR-guided PCI should be considered in patients with multivessel disease under- going PCL ^{29,31}	lla	в
IVUS should be considered to assess the severity of unprotected left main lesions. ^{35–37}	lla	в

Vulnerability also matters!

PROSPECT II

Stone GW, et al, JACC 2020

Erlinge D, et al. Lancet 2021

510

359

494

354

367

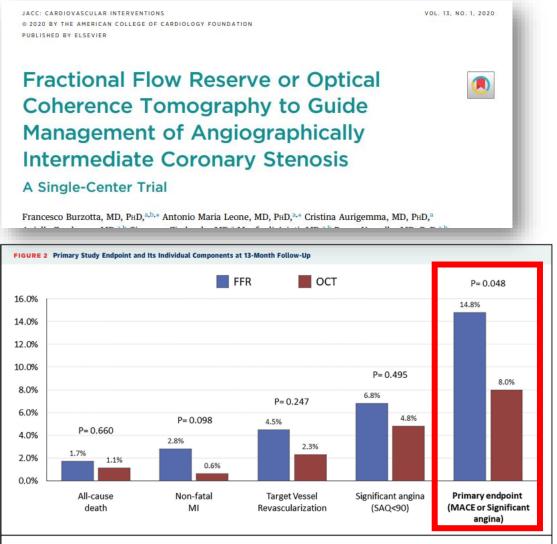
256

199

132

Plaque burden ≥70% 530

Plaque burden <70% 368


SNUH Seoul National University Hospital Cardiovascular Center

Yang SH and Koo BK. JACC Asia 2023 in press

Physiology vs. Imaging: Head to Head comparison

FFR = fractional flow reserve; MACE = major adverse cardiac event(s); MI = myocardial infarction; OCT = optical coherence tomography; SAQ = Seattle Angina Questionnaire.

TABLE 1 Baseline Clinical, Angiographic, and Procedural Characteristics

	FFR (n = 176)	OCT (n = 174)	p Value
Demographics			
Age, yrs	68 ± 10	69 ± 9	0.51
Male	126 (71.6)	135 (77.6)	0.22
BMI, kg/m ²	27 ± 10	27 ± 5	0.74
Risk factors			
Diabetes	61 (34.7)	63 (36.2)	0.82
Hypertension	148 (84.1)	151 (86.8)	0.54
Dyslipidemia	120 (68.2)	130 (84.7)	0.19
Smoking	70 (39.8)	66 (37.9)	0.74
Chronic kidney disease	32 (18.2)	30 (17.2)	0.90
Cardiac history			
Previous PCI	73 (41.5)	76 (43.7)	0.74
Previous CABG	4 (2.3)	5 (2.9)	0.75
Previous MI	33 (18.8)	52 (29.9)	0.02
Clinical presentation			
Stable ischemic heart disease	139 (79.0)	143 (82.2)	0.50
Acute coronary syndrome	37 (21.0)	31 (17.8)	
LVEF, %	60 ± 8	56 ± 9	0.74
Baseline angiographic features			
Multivessel disease	92 (52.3)	83 (47.7)	0.45
Investigated lesion location			0.02
LAD	150 (66.7)	134 (60.6)	
LCx	37 (16.4)	27 (12.2)	
DCA.	28 (16.0)	60 (27.1)	
Management			
Patients treated with PCI	57 (32.4)	92 (52.9)	<0.001
Number of stents per patient	0.33 ± 0.57	0.64 ± 0.70	<0.001
Optimal result (according to	19 (47.5)	55 (64.7)	0.001
study protocol) obtained			
Discharge therapy			
Aspirin	166 (94.3)	163 (93.6)	0.83
P2Y ₁₂ inhibitors	115 (65.3)	133 (76.4)	0.02
Calcium-channel blockers	57 (77.6)	FF (02.7)	0.20
	56 (31.8)	55 (31.6)	0.97
Statins	152 (86.3)	161 (92.5)	0.08
Nitrates	25 (14.2)	19 (10.9)	0.42
Ranolazine	31 (17.6)	24 (13.7)	0.38

6

FFR vs. IVUS for intermediate lesions: FLAVOUR trial

The NEW ENGLAND JOURNAL of MEDICINE

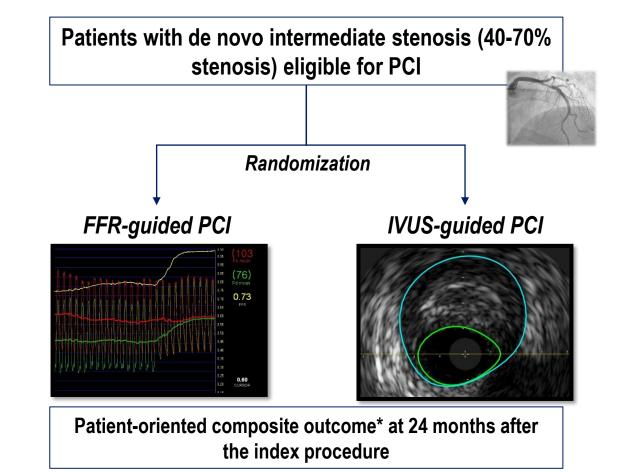
ESTABLISHED IN 1812

SEPTEMBER 1, 2022

Fractional Flow Reserve or Intravascular Ultrasonography to Guide PCI

B.-K. Koo, X. Hu, J. Kang, J. Zhang, J. Jiang, J.-Y. Hahn, C.-W. Nam, J.-H. Doh, B.-K. Lee, W. Kim, J. Huang,
F. Jiang, H. Zhou, P. Chen, L. Tang, W. Jiang, X. Chen, W. He, S.-G. Ahn, M.-H. Yoon, U. Kim, J.-M. Lee,
D. Hwang, Y.-J. Ki, E.-S. Shin, H.-S. Kim, S.-J. Tahk, and J. Wang, for the FLAVOUR Investigators*

ABSTRACT


BACKGROUND

In patients with coronary artery disease who are being evaluated for percutaneous coronary intervention (PCI), procedures can be guided by fractional flow reserve (FFR) or intravascular ultrasonography (IVUS) for decision making regarding revascularization and stent implantation. However, the differences in clinical outcomes when only one method is used for both purposes are unclear

The authors' full names, academic degrees, and affiliations are listed in the Appendix. Dr. Wang can be contacted at wja@zju.edu.cn or at the Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine,

VOL. 387 NO. 9

- 18 sites from Korea and China
- Principal Investigators: Bon-Kwon Koo, JianAn Wang, Seung-Jea Tahk

* Primary Endpoint: a composite of death from any cause, myocardial infarction, and any revascularization

• To compare the efficacy of FFR-guided PCI strategy with IVUS-guided PCI strategy in patients with intermediate coronary stenosis.

Working Hypothesis

The FFR-guided PCI strategy will be **non-inferior** to the IVUS-guided PCI strategy

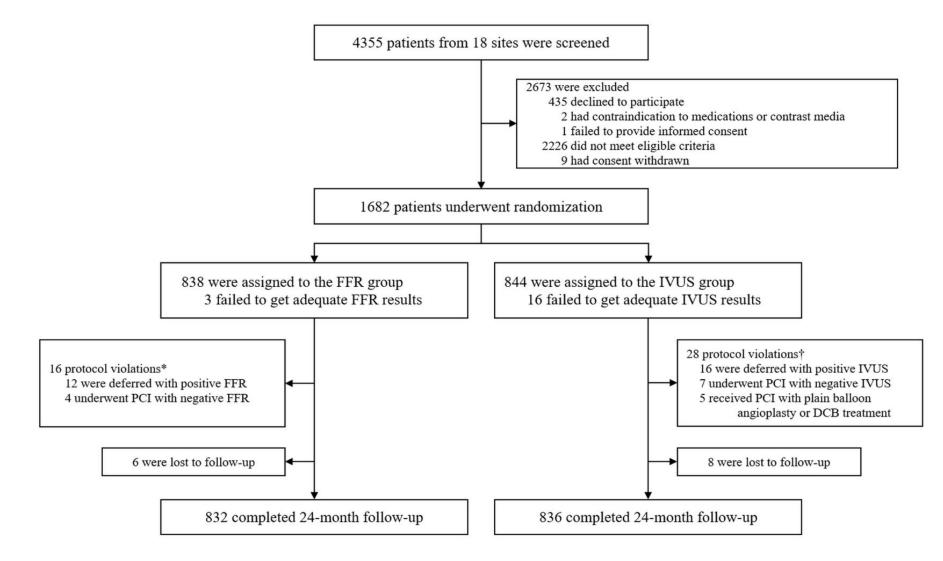
in regard to clinical outcomes at 2 years after the index procedure.

Indications for PCI & PCI Optimization

FFR-guided PCI	IVUS-guided PCI
Indicatio	ons for PCI
FFR ≤ 0.80	Minimum lumen area (MLA) ≤ 3 mm ² or 3 < MLA ≤ 4 mm ² & Plaque burden > 70%
Criteria for	r optimal PCI
Post-PCI FFR ≥ 0.88 or Post-PCI Δ FFR (FFR across the stent) < 0.05	Plaque burden at stent edge ≤ 55% Minimal stent area ≥ 5.5mm² or Minimal stent area ≥ distal reference lumen area

Endpoints and Sample Size Calculation

- Endpoints
 - Primary Endpoint: Patient-oriented composite outcome (POCO) at 24 months
 - A composite of death from any cause, myocardial infarction (MI), and any revascularization at 24 months
 - Secondary Endpoints
 - Individual components of the primary end point, number of stents used, stroke, and patient-reported outcomes measured with Seattle Angina Questionnaire (SAQ)


Sample size calculation

- Assumed 24-month POCO in the FFR-guided PCI group: 10.0%
- Assumed 24-month POCO in the IVUS-guided PCI group: 12.0%
- Type I error: 0.05, Power: 90%
- Non-inferiority margin: 2.5%

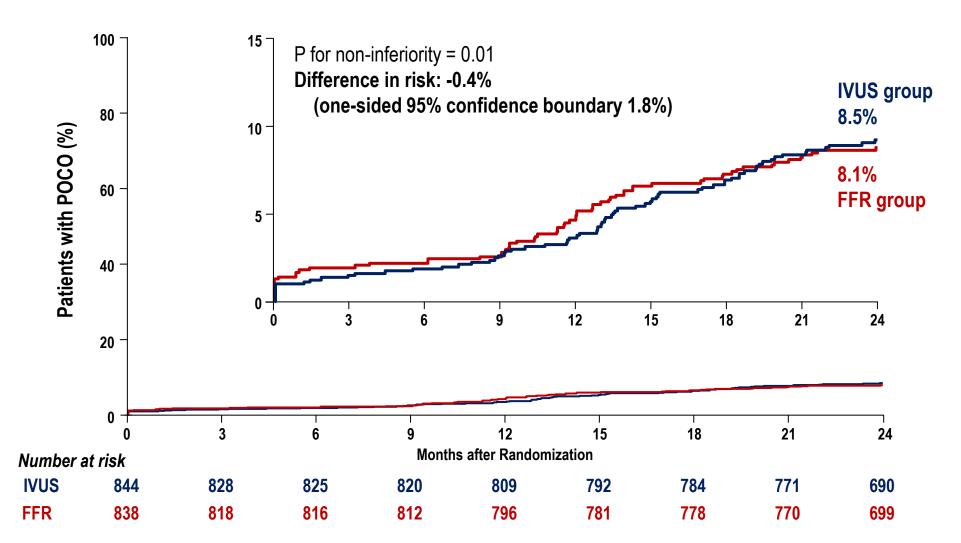
A total of 1,700 patients was needed.

Study Flow

11

Baseline Characteristics

	Total (N=1682)	FFR Group (N=838)	IVUS Group (N=844)	P value
Age, years	65.1±9.6	65.4±9.4	64.8±9.9	0.143
Male	1187 (70.6%)	584 (69.7%)	603 (71.4%)	0.461
Stable angina	1063 (63.2%)	519 (61.9%)	544 (64.5%)	0.432
Diabetes mellitus	554 (32.9%)	272 (32.5%)	282 (33.4%)	0.716
Target vessel QCA				
Reference vessel diameter, mm	3.0±0.5	3.0±0.5	3.0±0.5	0.784
Diameter stenosis, %	56.8±10.1	56.7±10.1	56.9±10.1	0.633
IVUS findings				
Minimal luminal area, mm ²			3.4±1.3	
Plaque burden, %			70.1±10.2	


FFR findings		
FFR	0.83±0.09	

PCI and Medications				
Target vessel PCI	831 (45.7%)	305 (33.2%)	526 (58.4%)	<0.001

Primary Outcome

* Primary Endpoint: death from any cause, myocardial infarction, and any revascularization

Subgroup Analysis

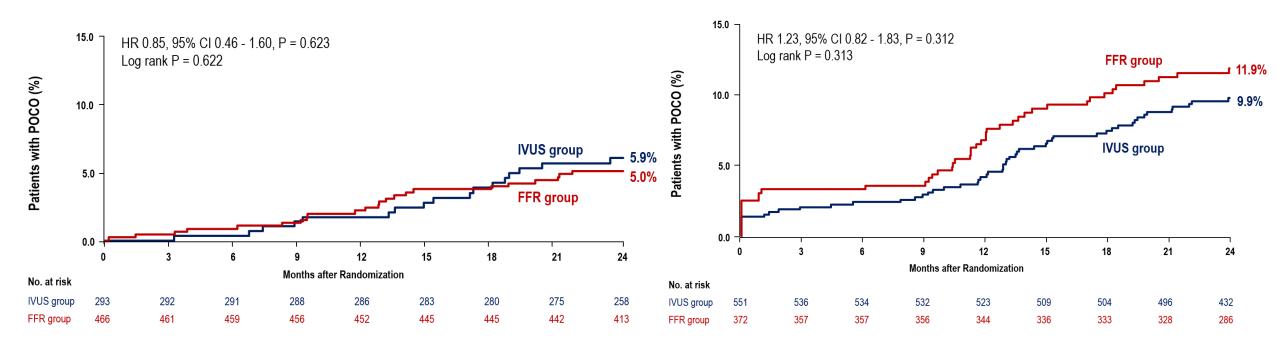
0.5

FFR-guided PCI better

1.5

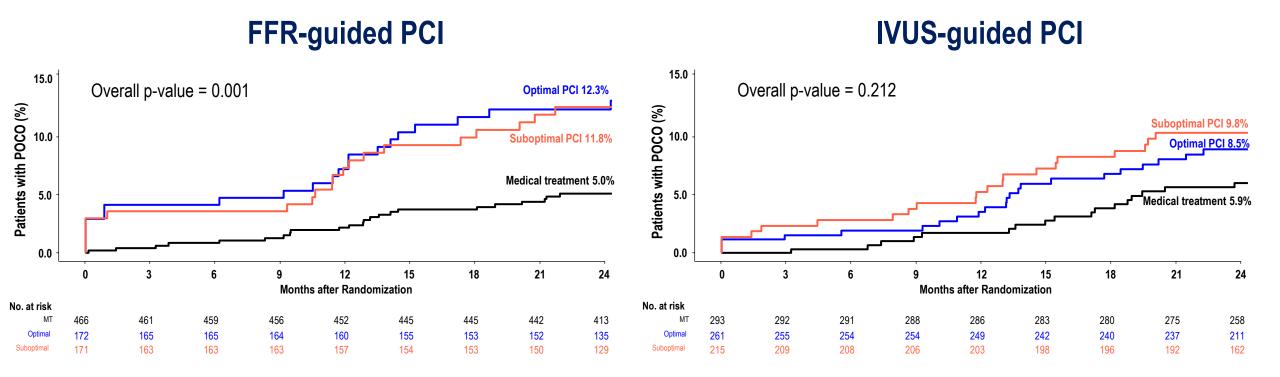
2 **IVUS-guided PCI better**

Subgroup	FFR group (events/patients)	IVUS group (events/patients)		Hazard Ratio (95% CI)
Age			1	
< 65 years	29/376	26/397		1.19 (0.70-2.02)
≥ 65 years	38/462	45/447		0.82 (0.53-1.26)
Sex				
Male	50/584	54/603		0.96 (0.65-1.41)
Female	17/254	17/241		0.95 (0.49-1.87)
Diabetes mellitus				
Yes	25/272	23/282		1.12 (0.64-1.98)
No	42/566	48/562		0.87 (0.58-1.32)
Clinical presentation as	ACS		-	
Yes	25/252	25/244		0.98 (0.56-1.70)
No	42/586	46/600		0.94 (0.62-1.42)
LAD as the target vessel				
Yes	40/573	45/554	_	0.86 (0.56-1.32)
No	27/265	26/290		1.15 (0.67-1.97)
Multivessel coronary art	ery disease			
Yes	53/445	46/430	_	1.13 (0.76-1.67)
No	14/393	25/414		- 0.59 (0.30-1.13)


No significant interaction between the treatment effect and key subgroups

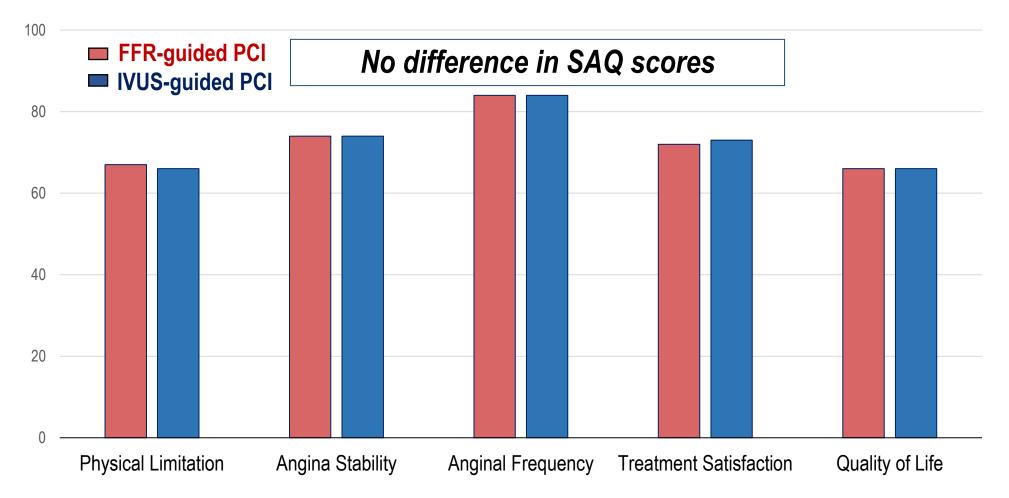
Primary Outcome According to Treatment

Indications for PCI & PCI Optimization


FFR-guided PCI IVUS-guided PCI		
Indica	tions for PCI	
FFR ≤ 0.80	Minimum lumen area (MLA) ≤ 3mm² or 3 < MLA ≤ 4mm² & Plaque burden > 70%	
Criteria	for optimal PCI	
Post-PCI FFR ≥ 0.88 or Post-PCI \triangle FFR (FFR across the stent) < 0.05	Plaque burden at stent edge ≤ 55% Minimal stent area ≥ 5.5mm ² or Minimal stent area ≥ distal reference lumen area	

Optimal PCI vs. Suboptimal PCI

Optimal PCI: FFR-guided PCI 50.1%, IVUS-guided PCI 54.8%



17

Patient-Reported Outcomes

Seattle Angina Questionnaire (SAQ) scores at follow-up

FLAVOUR trial Summary

In patients with intermediate lesions, FFR in comparison with IVUS

- PCI: 43.2% less in target vessels and 32% less in patient-level
- DAPT: 19.8% less of dual antiplatelet therapy use
- No difference (non-inferior) in clinical outcomes
- No difference in patient-reported quality of life

Limitations

- Intermediate coronary stenosis: The impact of FFR and IVUS guidance can be different in patients with more severe stenosis.
- **FFR and IVUS**: The role of non-hyperemic pressure ratios, image-derived FFR, OCT or NIRS-IVUS needs further investigation.
- Criteria for PCI: Local hemodynamic significance and features of plaque vulnerability were not used.

Take Home Messages

In patients with intermediate coronary stenosis,

- FFR-guided PCI was noninferior to IVUS-guided PCI with respect to a composite of death from any cause, MI, and any revascularization at 24 months after the index procedure.
- FFR-guided PCI was associated with a lower rate of stent implantation.
- No difference was observed in patient-reported outcomes between the two strategies.